Ultrastructure study of the stored lipid reserves in Gyrodactylus gasterostei (Monogenea) using confocal and transmission electron microscopy

This study examines the distribution and depletion of stored lipids in Gyrodactylus gasterostei Gläser, 1974, migrating off its three-spine stickleback host Gasterosteus aculeatus L., with the prospect that it might prove informative for interpreting the biology of other gyrodactylids species more g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of microscopy & ultrastructure 2018-04, Vol.6 (2), p.65-71
1. Verfasser: Grano-Maldonado, Mayra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study examines the distribution and depletion of stored lipids in Gyrodactylus gasterostei Gläser, 1974, migrating off its three-spine stickleback host Gasterosteus aculeatus L., with the prospect that it might prove informative for interpreting the biology of other gyrodactylids species more generally. Nonfeeding life cycle stages, such as the dispersal stages of parasites, are dependent for survival upon finite energy reserves gathered during feeding phases. Thus, those individuals with more limited reserves will die sooner and consequently have less time available to find a new host once detached. At this stage, the principal energy reserves in gyrodactylids are stored as large lipid droplets. Confocal laser scanning microscopy has been used to investigate the distribution of lipid droplets in Gyrodactylus, which have migrated off their fish host, testing the hypothesis that these droplets function as a proxy for the nutritional state. This study demonstrated that the lipid droplets were particularly associated with the gut and that there is a significant variability in the volume of stored lipid carried out by each individual. Transmission electron microscopy showed that gyrodactylids carry lipid droplets at all stages of their life cycle, including at release from the birth pore. It is likely that transferring worms requires stored energy reserves to survive in the event of failure to establish contact with a new host. These reserves could allow the parasite to survive without a host for several days.
ISSN:2213-879X
2213-8803
DOI:10.4103/JMAU.JMAU_20_18