An Automated T-maze Based Apparatus and Protocol for Analyzing Delay- and Effort-based Decision Making in Free Moving Rodents

Many neurological and psychiatric patients demonstrate difficulties and/or deficits in decision making. Rodent models are helpful to produce a deeper understanding of the neurobiological causes underlying the decision-making problems. A cost-benefit based T-maze task is used for measuring decision m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visualized experiments 2018-08 (138)
Hauptverfasser: Zhang, Qi, Kobayashi, Yuki, Goto, Hiromichi, Itohara, Shigeyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many neurological and psychiatric patients demonstrate difficulties and/or deficits in decision making. Rodent models are helpful to produce a deeper understanding of the neurobiological causes underlying the decision-making problems. A cost-benefit based T-maze task is used for measuring decision making in which rodents choose between a high reward arm (HRA) and a low reward arm (LRA). There are two paradigms of the T-maze decision-making task, one in which the cost is a time delay and the other in which it is physical effort. Both paradigms require a tedious and labor-intensive management of experimental animals, multiple doors, pellet reward, and arm choice recordings. In the current work, we invented an apparatus based on traditional T-maze with full automation for pellet delivery, door management and choice recordings. This automated setup can be used for the evaluation of both delay- and effort-based decision making in rodents. With the protocol described here, our lab investigated the decision-making phenotypes of multiple genetically modified mice. In the representative data, we showed that the mice with ablated medial habenular showed aversions of both delay and effort and tended to choose the immediate and effortless reward. This protocol helps to decrease the variability caused by experimenter intervention and to enhance experiment efficiency. In addition, chronic silicon probe or microelectrode recording, fiber-optic imaging and/or manipulation of neural activity can be easily applied during the decision-making task using the setup described here.
ISSN:1940-087X
1940-087X
DOI:10.3791/57895