Self-replication of circular DNA by a self-encoded DNA polymerase through rolling-circle replication and recombination
A major challenge in constructing artificial cells is the establishment of a recursive genome replication system coupled with gene expression from the genome itself. One of the simplest schemes of recursive DNA replication is the rolling-circle replication of a circular DNA coupled with recombinatio...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-08, Vol.8 (1), p.13089-11, Article 13089 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A major challenge in constructing artificial cells is the establishment of a recursive genome replication system coupled with gene expression from the genome itself. One of the simplest schemes of recursive DNA replication is the rolling-circle replication of a circular DNA coupled with recombination. In this study, we attempted to develop a replication system based on this scheme using self-encoded phi29 DNA polymerase and externally supplied Cre recombinase. We first identified that DNA polymerization is significantly inhibited by Cre recombinase. To overcome this problem, we performed
in vitro
evolution and obtained an evolved circular DNA that can replicate efficiently in the presence of the recombinase. We also showed evidence that during replication of the evolved DNA, the circular DNA was reproduced through recombination by Cre recombinase. These results demonstrate that the evolved circular DNA can reproduce itself through gene expression of a self-encoded polymerase. This study provides a step forward in developing a simple recursive DNA replication system for use in an artificial cell. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-31585-1 |