Repeated penile girth enhancement with biodegradable scaffolds: Microscopic ultrastructural analysis and surgical benefits
Autologous tissue engineering using biodegradable scaffolds as a carrier is a well-known procedure for penile girth enhancement. We evaluated a group of previously treated patients with the aim to analyze histomorphometric changes after tissue remodeling and to estimate the benefits of repeated proc...
Gespeichert in:
Veröffentlicht in: | Asian journal of andrology 2018-09, Vol.20 (5), p.488-492 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Autologous tissue engineering using biodegradable scaffolds as a carrier is a well-known procedure for penile girth enhancement. We evaluated a group of previously treated patients with the aim to analyze histomorphometric changes after tissue remodeling and to estimate the benefits of repeated procedure. Between February 2012 and December 2016, a group of 21 patients, aged 22-37 (mean 28.0) years, underwent a repeated penile girth enhancement procedure with biodegradable scaffolds. Procedure included insertion of two poly-lactic-co-glycolic acid scaffolds seeded with laboratory-prepared fibroblasts from scrotal tissue specimens. During this procedure, biopsy specimens of tissue formed after the first surgery were taken for microscopic analysis. The mean follow-up was 38 months. Connective tissue with an abundance of connective tissue fibers, small blood vessels, and inflammatory cells were observed in all analyzed surgically removed tissue. Ultrastructural analysis of these tissue samples discovered the presence of large quantities of collagen fibrils running parallel to each other, forming bundles, with a few widely spread fibroblasts. In total, the mean values of flaccid and erect gain in girth after the second surgery were 1.1 ± 0.4 (range: 0.6-1.7) cm and 1.0 ± 0.3 (range: 0.6-1.5) cm, respectively. Microscopic evaluation of newly formed tissue, induced by autologous tissue engineering using biodegradable scaffolds, showed the presence of vascularized loose connective tissue with an abundance of collagen fibers, fibroblasts, and inflammatory cells, indicating active neovascularization and fibrinogenesis. The benefit of the repeated enhancement procedure was statistically significant. |
---|---|
ISSN: | 1008-682X 1745-7262 |
DOI: | 10.4103/aja.aja_35_18 |