Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons
Human ALS/FTD patient iPSC-derived neurons are used to uncover mechanisms by which C9ORF72 mutations cause neurodegeneration. An intronic GGGGCC repeat expansion in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the pathogenic mechanism...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2018-03, Vol.24 (3), p.313-325 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human ALS/FTD patient iPSC-derived neurons are used to uncover mechanisms by which C9ORF72 mutations cause neurodegeneration.
An intronic GGGGCC repeat expansion in
C9ORF72
is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the pathogenic mechanism of this repeat remains unclear. Using human induced motor neurons (iMNs), we found that repeat-expanded
C9ORF72
was haploinsufficient in ALS. We found that C9ORF72 interacted with endosomes and was required for normal vesicle trafficking and lysosomal biogenesis in motor neurons. Repeat expansion reduced
C9ORF72
expression, triggering neurodegeneration through two mechanisms: accumulation of glutamate receptors, leading to excitotoxicity, and impaired clearance of neurotoxic dipeptide repeat proteins derived from the repeat expansion. Thus, cooperativity between gain- and loss-of-function mechanisms led to neurodegeneration. Restoring C9ORF72 levels or augmenting its function with constitutively active RAB5 or chemical modulators of RAB5 effectors rescued patient neuron survival and ameliorated neurodegenerative processes in both gain- and loss-of-function
C9ORF72
mouse models. Thus, modulating vesicle trafficking was able to rescue neurodegeneration caused by the
C9ORF72
repeat expansion. Coupled with rare mutations in
ALS2, FIG4, CHMP2B, OPTN
and
SQSTM1
, our results reveal mechanistic convergence on vesicle trafficking in ALS and FTD. |
---|---|
ISSN: | 1078-8956 1546-170X |
DOI: | 10.1038/nm.4490 |