Animal models of Wilson disease

Wilson disease (WD) is an autosomal recessive disorder of copper metabolism manifesting with hepatic, neurological and psychiatric symptoms. The limitations of the currently available therapy for WD (particularly in the management of neuropsychiatric disease), together with our limited understanding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2018-08, Vol.146 (4), p.356-373
Hauptverfasser: Reed, Emily, Lutsenko, Svetlana, Bandmann, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wilson disease (WD) is an autosomal recessive disorder of copper metabolism manifesting with hepatic, neurological and psychiatric symptoms. The limitations of the currently available therapy for WD (particularly in the management of neuropsychiatric disease), together with our limited understanding of key aspects of this illness (e.g. neurological vs. hepatic presentation) justify the ongoing need to study WD in suitable animal models. Four animal models of WD have been established: the Long‐Evans Cinnamon rat, the toxic‐milk mouse, the Atp7b knockout mouse and the Labrador retriever. The existing models of WD all show good similarity to human hepatic WD and have been helpful in developing an improved understanding of the human disease. As mammals, the mouse, rat and canine models also benefit from high homology to the human genome. However, important differences exist between these mammalian models and human disease, particularly the absence of a convincing neurological phenotype. This review will first provide an overview of our current knowledge of the orthologous genes encoding ATP7B and the closely related ATP7A protein in C. elegans, Drosophila and zebrafish (Danio rerio) and then summarise key characteristics of rodent and larger mammalian models of ATP7B‐deficiency. Wilson disease is an autosomal recessively inherited copper storage disease. Neurological impairment is common. In this review, we describe the different animal models available for this condition with particular focus on rodent models. Many of them closely resemble the hepatic involvement observed in human WD patients, but do not develop a neurological deficit.
ISSN:0022-3042
1471-4159
DOI:10.1111/jnc.14323