Clocks and meals keep mice from being cool

Daily torpor is used by small mammals to reduce daily energy expenditure in response to energetic challenges. Optimizing the timing of daily torpor allows mammals to maximize its energetic benefits and, accordingly, torpor typically occurs in the late night and early morning in most species. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2018-08, Vol.221 (Pt 15)
Hauptverfasser: van der Vinne, Vincent, Bingaman, Mark J, Weaver, David R, Swoap, Steven J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Daily torpor is used by small mammals to reduce daily energy expenditure in response to energetic challenges. Optimizing the timing of daily torpor allows mammals to maximize its energetic benefits and, accordingly, torpor typically occurs in the late night and early morning in most species. However, the regulatory mechanisms underlying such temporal regulation have not been elucidated. Direct control by the circadian clock and indirect control through the timing of food intake have both been suggested as possible mechanisms. Here, feeding cycles outside of the circadian range and brain-specific mutations of circadian clock genes ( ; ) were used to separate the roles of the circadian clock and food timing in controlling the timing of daily torpor in mice. These experiments revealed that the timing of daily torpor is transiently inhibited by feeding, while the circadian clock is the major determinant of the timing of torpor. Torpor never occurred during the early part of the circadian active phase, but was preferentially initiated late in the subjective night. Food intake disrupted torpor in the first 4-6 h after feeding by preventing or interrupting torpor bouts. Following interruption, re-initiation of torpor was unlikely until after the next circadian active phase. Overall, these results demonstrate that feeding transiently inhibits torpor while the central circadian clock gates the timing of daily torpor in response to energetic challenges by restricting the initiation of torpor to a specific circadian phase.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.179812