Automated 3D-Printed Microfluidic Array for Rapid Nanomaterial-Enhanced Detection of Multiple Proteins
We report here the fabrication and validation of a novel 3D-printed, automated immunoarray to detect multiple proteins with ultralow detection limits. This low cost, miniature immunoarray employs electrochemiluminescent (ECL) detection measured with a CCD camera and employs touch-screen control of a...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2018-06, Vol.90 (12), p.7569-7577 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report here the fabrication and validation of a novel 3D-printed, automated immunoarray to detect multiple proteins with ultralow detection limits. This low cost, miniature immunoarray employs electrochemiluminescent (ECL) detection measured with a CCD camera and employs touch-screen control of a micropump to facilitate automated use. The miniaturized array features prefilled reservoirs to deliver sample and reagents to a paper-thin pyrolytic graphite microwell detection chip to complete sandwich immunoassays. The detection chip achieves high sensitivity by using single-wall carbon nanotube–antibody conjugates in the microwells and employing massively labeled antibody-decorated RuBPY–silica nanoparticles to generate ECL. The total cost of an array is $0.65, and an eight-protein assay can be done in duplicate for $0.14 per protein with limits of detection (LOD) as low as 78–110 fg mL–1 in diluted serum. The electronic control system costs $210 in components. Utility of the automated immunoarray was demonstrated by detecting an eight-protein prostate cancer biomarker panel in human serum samples in 25 min. The system is well suited to future clinical and point-of-care diagnostic testing and could be used in resource-limited environments. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.8b01198 |