Whole Mount Immunofluorescence and Follicle Quantification of Cultured Mouse Ovaries
Research in the field of mammalian reproductive biology often involves evaluating the overall health of ovaries and testes. Specifically, in females, ovarian fitness is often assessed by visualizing and quantifying follicles and oocytes. Because the ovary is an opaque three-dimensional tissue, tradi...
Gespeichert in:
Veröffentlicht in: | Journal of Visualized Experiments 2018-05 (135) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Research in the field of mammalian reproductive biology often involves evaluating the overall health of ovaries and testes. Specifically, in females, ovarian fitness is often assessed by visualizing and quantifying follicles and oocytes. Because the ovary is an opaque three-dimensional tissue, traditional approaches require laboriously slicing the tissue into numerous serial sections in order to visualize cells throughout the entire organ. Furthermore, because quantification by this method typically entails scoring only a subset of the sections separated by the approximate diameter of an oocyte, it is prone to inaccuracy. Here, a protocol is described that instead utilizes whole organ tissue clearing and immunofluorescence staining of mouse ovaries to visualize follicles and oocytes. Compared to more traditional approaches, this protocol is advantageous for visualizing cells within the ovary for numerous reasons: 1) the ovary remains intact throughout sample preparation and processing; 2) small ovaries, which are difficult to section, can be examined with ease; 3) cellular quantification is more readily and accurately achieved; and 4) the whole organ imaged. |
---|---|
ISSN: | 1940-087X 1940-087X |
DOI: | 10.3791/57593 |