Circadian control of ORE1 by PRR9 positively regulates leaf senescence in Arabidopsis

The circadian clock coordinates the daily cyclic rhythm of numerous biological processes by regulating a large portion of the transcriptome. In animals, the circadian clock is involved in aging and senescence, and circadian disruption by mutations in clock genes frequently accelerates aging. Convers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-08, Vol.115 (33), p.8448-8453
Hauptverfasser: Kim, Hyunmin, Kim, Hyo Jung, Vu, Quy Thi, Jung, Sukjoon, McClung, C. Robertson, Hong, Sunghyun, Nam, Hong Gil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The circadian clock coordinates the daily cyclic rhythm of numerous biological processes by regulating a large portion of the transcriptome. In animals, the circadian clock is involved in aging and senescence, and circadian disruption by mutations in clock genes frequently accelerates aging. Conversely, aging alters circadian rhythmicity, which causes age-associated physiological alterations. However, interactions between the circadian clock and aging have been rarely studied in plants. Here, we investigated potential roles for the circadian clock in the regulation of leaf senescence in plants. Members of the evening complex in Arabidopsis circadian clock, EARLY FLOWERING 3 (ELF3), EARLY FLOWERING 4 (ELF4), and LUX ARRHYTHMO (LUX), as well as the morning component PSEUDO-RESPONSE REGULATOR 9 (PRR9), affect both age-dependent and dark-induced leaf senescence. The circadian clock regulates the expression of several senescence-related transcription factors. In particular, PRR9 binds directly to the promoter of the positive aging regulator ORESARA1 (ORE1) gene to promote its expression. PRR9 also represses miR164, a posttranscriptional repressor of ORE1. Consistently, genetic analysis revealed that delayed leaf senescence of a prr9 mutant was rescued by ORE1 overexpression. Thus, PRR9, a core circadian component, is a key regulator of leaf senescence via positive regulation of ORE1 through a feed-forward pathway involving posttranscriptional regulation by miR164 and direct transcriptional regulation. Our results indicate that, in plants, the circadian clock and leaf senescence are intimately interwoven as are the clock and aging in animals.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1722407115