Warsaw breakage syndrome DDX11 helicase acts jointly with RAD17 in the repair of bulky lesions and replication through abasic sites

Warsaw breakage syndrome, a developmental disorder caused by mutations in the DDX11/ChlR1 helicase, shows cellular features of genome instability similar to Fanconi anemia (FA). Here we report that DDX11-deficient avian DT40 cells exhibit interstrand crosslink (ICL)-induced chromatid breakage, with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-08, Vol.115 (33), p.8412-8417
Hauptverfasser: Abe, Takuya, Ooka, Masato, Kawasumi, Ryotaro, Miyata, Keiji, Takata, Minoru, Hirota, Kouji, Branzei, Dana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Warsaw breakage syndrome, a developmental disorder caused by mutations in the DDX11/ChlR1 helicase, shows cellular features of genome instability similar to Fanconi anemia (FA). Here we report that DDX11-deficient avian DT40 cells exhibit interstrand crosslink (ICL)-induced chromatid breakage, with DDX11 functioning as backup for the FA pathway in regard to ICL repair. Importantly, we establish that DDX11 acts jointly with the 9-1-1 checkpoint clamp and its loader, RAD17, primarily in a postreplicative fashion, to promote homologous recombination repair of bulky lesions, but is not required for intra-S checkpoint activation or efficient fork progression. Notably, we find that DDX11 also promotes diversification of the chicken Ig-variable gene, a process triggered by programmed abasic sites, by facilitating both hypermutation and homeologous recombination-mediated gene conversion. Altogether, our results uncover that DDX11 orchestrates jointly with 9-1-1 and its loader, RAD17, DNA damage tolerance at sites of bulky lesions, and endogenous abasic sites. These functions may explain the essential roles of DDX11 and its similarity with 9-1-1 during development.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1803110115