Adipose tissue proteomic analyses to study puberty in Brahman heifers
Abstract The adipose tissue has been recognized as an active endocrine organ which can modulate numerous physiological processes such as metabolism, appetite, immunity, and reproduction. The aim of this study was to look for differentially abundant proteins and their biological functions in the abdo...
Gespeichert in:
Veröffentlicht in: | Journal of animal science 2018-06, Vol.96 (6), p.2392-2398 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
The adipose tissue has been recognized as an active endocrine organ which can modulate numerous physiological processes such as metabolism, appetite, immunity, and reproduction. The aim of this study was to look for differentially abundant proteins and their biological functions in the abdominal adipose tissue between pre- and postpubertal Brahman heifers. Twelve Brahman heifers were divided into 2 groups and paired on slaughter day. Prepubertal heifers had never ovulated and postpubertal heifers were slaughtered on the luteal phase of their second estrous cycle. After ensuring the occurrence of puberty in postpubertal heifers, abdominal adipose tissue samples were collected. Mass spectrometry proteomic analysis identified 646 proteins and revealed that 171 proteins showed differential abundance in adipose tissue between the pre- and postpuberty groups (adjusted P-value < 0.05). Data are available via ProteomeXchange with identifier PXD009452. Using a list of 51 highly differentially abundant proteins as the target (adjusted P-value < 10−5), we found 14 enriched pathways. The results indicated that gluconeogenesis was enhanced when puberty approached. The metabolism of glucose, lipids, and AA in the adipose tissue mainly participated in oxidation and energy supply for heifers when puberty occurred. Our study also revealed the differentially abundant proteins were enriched for estrogen signaling and PI3K-Akt signaling pathways, which are known integrators of metabolism and reproduction. These results suggest new candidate proteins that may contribute to a better understanding of the signaling mechanisms that relate adipose tissue function to puberty. Protein–protein interaction network analysis identified 4 hub proteins that had the highest degrees of connection: PGK1, ALDH5A1, EEF2, and LDHB. Highly connected proteins are likely to influence the functions of all differentially abundant proteins identified, directly or indirectly. |
---|---|
ISSN: | 0021-8812 1525-3163 |
DOI: | 10.1093/jas/sky128 |