Serotonin induces parathyroid hormone-related protein in goat mammary gland
Abstract During lactation, large amounts of calcium are exported from the mammary gland into milk to ensure skeletal growth of the offspring. Recent studies revealed that serotonin (5-HT) is essential to stimulate skeletal calcium resorption for milk synthesis. Our objective was to explore the corre...
Gespeichert in:
Veröffentlicht in: | Journal of animal science 2018-04, Vol.96 (3), p.1010-1016 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
During lactation, large amounts of calcium are exported from the mammary gland into milk to ensure skeletal growth of the offspring. Recent studies revealed that serotonin (5-HT) is essential to stimulate skeletal calcium resorption for milk synthesis. Our objective was to explore the correlation between circulating 5-HT and serum calcium and parathyroid hormone-related protein (PTHrP) concentrations around parturition in dairy goats. We also investigated the effect of 5-HT on PTHrP expression in cultured primary goat mammary epithelial cells (GMEC). Blood samples of multiparous Guanzhong dairy goats were collected on day −5 to 3 postpartum for analysis of serum concentrations of calcium, 5-HT, and PTHrP. Results revealed that from day −3 to 0 postpartum serum calcium and 5-HT concentrations decreased progressively, but serum PTHrP concentration only had a sharp drop in the postpartum period sampled. Correlation analysis of circulating 5-HT and serum calcium and PTHrP concentrations on day 1 and 2 postpartum revealed that low serum 5-HT concentration was positively correlated with serum total calcium or PTHrP concentration. By knocking down tryptophan hydroxylase-1 (TPH1) or adding 5-hydroxytryptophan (5-HTP) to decrease or increase the levels of 5-HT in GMEC, we observed that 5-HTP increased PTHrP expression in a dose-dependent manner and siTPH1 decreased PTHrP protein expression. Furthermore, 5-HT increased mRNA abundance of calcium-sensing receptor (CaSR) in a dose-dependent manner and decreased the expression of plasma membrane Ca2+ ATPase-1 (PMCA1). Taken together, 5-HT seems to induce PTHrP expression in goat mammary cells during and after parturition. These findings suggest that increasing 5-HT biosynthesis could be a potential therapeutic target for prevention of hypocalcemia in dairy goats. |
---|---|
ISSN: | 0021-8812 1525-3163 |
DOI: | 10.1093/jas/skx023 |