Resting-state alpha power is selectively associated with autistic traits reflecting behavioral rigidity

Previous research suggests that variation in at-rest neural activity correlates with specific domains of the ASD phenotype; however, few studies have linked patterns of brain activity with autistic trait expression in typically developing populations. The purpose of this study was to examine associa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-08, Vol.8 (1), p.11982-7, Article 11982
Hauptverfasser: Carter Leno, Virginia, Tomlinson, Samuel B., Chang, Shou-An A., Naples, Adam J., McPartland, James C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous research suggests that variation in at-rest neural activity correlates with specific domains of the ASD phenotype; however, few studies have linked patterns of brain activity with autistic trait expression in typically developing populations. The purpose of this study was to examine associations between resting-state electroencephalography (EEG) and three domains of the broader autism phenotype (social interest, rigidity, and pragmatic language) in typically developing individuals. High-density scalp EEG was recorded in thirty-seven typically developing adult participants (13 male, aged 18–52 years). The Broad Autism Phenotype Questionnaire (BAP-Q) was used to measure autistic trait expression. Absolute alpha power (8–13 Hz) was extracted from eyes-closed epochs using spectral decomposition techniques. Analyses revealed a specific positive association between scores on the BAP-Q Rigidity subscale and alpha power in the parietal scalp region. No significant associations were found between alpha power and the BAP-Q Aloofness or Pragmatic Language subscales. Furthermore, the association between EEG power and behavioral rigidity was specific to the alpha frequency band. This study demonstrates that specific traits within the broader autism phenotype are associated with dissociable patterns of at-rest neural activity.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-30445-2