Pharmacokinetics and oxidation parameters in volunteers supplemented with microencapsulated docosahexaenoic acid

Context: Docosahexaenoic acid (DHA) is an omega-3 fatty acid essential for cardiovascular health, brain development, and reproductive function. Due to hydrophobicity and low DHA bioavailability, new microencapsulated DHA formulations are under development. Aim: This study aims to evaluate DHA pharma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied and basic medical research 2018-07, Vol.8 (3), p.148-154
Hauptverfasser: Petyaev, Ivan, Chalyk, Natalya, Klochkov, Victor, Pristensky, Dmitry, Chernyshova, Marina, Kyle, Nigel, Bashmakov, Yuriy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context: Docosahexaenoic acid (DHA) is an omega-3 fatty acid essential for cardiovascular health, brain development, and reproductive function. Due to hydrophobicity and low DHA bioavailability, new microencapsulated DHA formulations are under development. Aim: This study aims to evaluate DHA pharmacokinetics (PKs) and biological oxidation parameters in volunteers ingesting a newly developed lutein-containing lycosomal formulation of DHA (LF-DHA). Materials and Methods: A total of 32 healthy volunteers (40-65 years old) with signs of oxidative stress (OS) and subclinical hypoxia were orally supplemented for a month with 250 mg of regular DHA (1st group) or a combination of lutein (7.0 mg) and zeaxanthin (1.4 mg) (2nd group). The third group received regular DHA (250 mg) co-ingested with lutein/zeaxanthin (7.0/1.4 mg), whereas the 4th group was given LF-DHA containing lutein/zeaxanthin (7.0/1.4 mg). PK, OS, and oxygenation parameters were analyzed. Results: LF-DHA improved the PKs of DHA enhancing its serum concentrations time dependently by 34.6% and 94.1% after 2nd and 4th weeks, respectively. DHA and lutein ingested either alone or simultaneously as two separate formulations reduced the levels of OS markers. However, LF-DHA inhibited the malonicdialdehyde (MDA) and oxidized low-density lipoprotein values were better than other formulations. LF-DHA also enhanced the plasma oxygen and tissue oxygen saturation. This effect was significantly higher than in other groups. Conclusion: LF-DHA eliminates the need in high-dose DHA supplementation protocols and confers a higher DHA bioavailability, thereby improving the parameters of biological oxidation and tissue respiration in affected individuals.
ISSN:2229-516X
2248-9606
DOI:10.4103/ijabmr.IJABMR_367_17