Biosynthesis of Branched Alkoxy Groups: Iterative Methyl Group Alkylation by a Cobalamin-Dependent Radical SAM Enzyme

The biosynthesis of branched alkoxy groups, such as the unique t-butyl group found in a variety of natural products, is still poorly understood. Recently, cystobactamids were isolated and identified from Cystobacter sp as novel antibacterials. These metabolites contain an isopropyl group proposed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-02, Vol.139 (5), p.1742-1745
Hauptverfasser: Wang, Yuanyou, Schnell, Bastien, Baumann, Sascha, Müller, Rolf, Begley, Tadhg P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The biosynthesis of branched alkoxy groups, such as the unique t-butyl group found in a variety of natural products, is still poorly understood. Recently, cystobactamids were isolated and identified from Cystobacter sp as novel antibacterials. These metabolites contain an isopropyl group proposed to be formed using CysS, a cobalamin-dependent radical S-adenosylmethionine (SAM) methyltransferase. Here, we reconstitute the CysS-catalyzed reaction, on p-aminobenzoate thioester substrates, and demonstrate that it not only catalyzes sequential methylations of a methyl group to form ethyl and isopropyl groups but remarkably also sec-butyl and t-butyl groups. To our knowledge, this is the first in vitro reconstitution of a cobalamin-dependent radical SAM enzyme catalyzing the conversion of a methyl group to a t-butyl group.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.6b10901