Predicting Mood Disturbance Severity with Mobile Phone Keystroke Metadata: A BiAffect Digital Phenotyping Study

Mood disorders are common and associated with significant morbidity and mortality. Better tools are needed for their diagnosis and treatment. Deeper phenotypic understanding of these disorders is integral to the development of such tools. This study is the first effort to use passively collected mob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical Internet research 2018-07, Vol.20 (7), p.e241-e241
Hauptverfasser: Zulueta, John, Piscitello, Andrea, Rasic, Mladen, Easter, Rebecca, Babu, Pallavi, Langenecker, Scott A, McInnis, Melvin, Ajilore, Olusola, Nelson, Peter C, Ryan, Kelly, Leow, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mood disorders are common and associated with significant morbidity and mortality. Better tools are needed for their diagnosis and treatment. Deeper phenotypic understanding of these disorders is integral to the development of such tools. This study is the first effort to use passively collected mobile phone keyboard activity to build deep digital phenotypes of depression and mania. The objective of our study was to investigate the relationship between mobile phone keyboard activity and mood disturbance in subjects with bipolar disorders and to demonstrate the feasibility of using passively collected mobile phone keyboard metadata features to predict manic and depressive signs and symptoms as measured via clinician-administered rating scales. Using a within-subject design of 8 weeks, subjects were provided a mobile phone loaded with a customized keyboard that passively collected keystroke metadata. Subjects were administered the Hamilton Depression Rating Scale (HDRS) and Young Mania Rating Scale (YMRS) weekly. Linear mixed-effects models were created to predict HDRS and YMRS scores. The total number of keystrokes was 626,641, with a weekly average of 9791 (7861), and that of accelerometer readings was 6,660,890, with a weekly average 104,076 (68,912). A statistically significant mixed-effects regression model for the prediction of HDRS-17 item scores was created: conditional R =.63, P=.01. A mixed-effects regression model for YMRS scores showed the variance accounted for by random effect was zero, and so an ordinary least squares linear regression model was created: R =.34, P=.001. Multiple significant variables were demonstrated for each measure. Mood states in bipolar disorder appear to correlate with specific changes in mobile phone usage. The creation of these models provides evidence for the feasibility of using passively collected keyboard metadata to detect and monitor mood disturbances.
ISSN:1438-8871
1439-4456
1438-8871
DOI:10.2196/jmir.9775