The production of glial cell line-derived neurotrophic factor by human sertoli cells is substantially reduced in sertoli cell-only testes
Abstract STUDY QUESTION Do human Sertoli cells in testes that exhibit the Sertoli cell-only (SCO) phenotype produce substantially less glial cell line-derived neurotrophic factor (GDNF) than Sertoli cells in normal testes? SUMMARY ANSWER In human SCO testes, both the amounts of GDNF mRNA per testis...
Gespeichert in:
Veröffentlicht in: | Human reproduction (Oxford) 2017-05, Vol.32 (5), p.1108-1117 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
STUDY QUESTION
Do human Sertoli cells in testes that exhibit the Sertoli cell-only (SCO) phenotype produce substantially less glial cell line-derived neurotrophic factor (GDNF) than Sertoli cells in normal testes?
SUMMARY ANSWER
In human SCO testes, both the amounts of GDNF mRNA per testis and the concentration of GDNF protein per Sertoli cell are markedly reduced as compared to normal testes.
WHAT IS KNOWN ALREADY
In vivo, GDNF is required to sustain the numbers and function of mouse spermatogonial stem cells (SSCs) and their immediate progeny, transit-amplifying progenitor spermatogonia. GDNF is expressed in the human testis, and the ligand-binding domain of the GDNF receptor, GFRA1, has been detected on human SSCs. The numbers and/or function of these stem cells are markedly reduced in some infertile men, resulting in the SCO histological phenotype.
STUDY DESIGN, SIZE, AND DURATION
We determined the numbers of human spermatogonia per mm2 of seminiferous tubule surface that express GFRA1 and/or UCHL1, another marker of human SSCs. We measured GFRA1 mRNA expression in order to document the reduced numbers and/or function of SSCs in SCO testes. We quantified GDNF mRNA in testes of humans and mice, a species with GDNF-dependent SSCs. We also compared GDNF mRNA expression in human testes with normal spermatogenesis to that in testes exhibiting the SCO phenotype. As controls, we also measured transcripts encoding two other Sertoli cell products, kit ligand (KITL) and clusterin (CLU). Finally, we compared the amounts of GDNF per Sertoli cell in normal and SCO testes.
PARTICIPANTS/MATERIALS SETTING METHODS
Normal human testes were obtained from beating heart organ donors. Biopsies of testes from men who were infertile due to maturation arrest or the SCO phenotype were obtained as part of standard care during micro-testicular surgical sperm extraction. Cells expressing GFRA1, UCHL1 or both on whole mounts of normal human seminiferous tubules were identified by immunohistochemistry and confocal microscopy and their numbers were determined by image analysis. Human GDNF mRNA and GFRA1 mRNA were quantified by use of digital PCR and Taqman primers. Transcripts encoding mouse GDNF and human KITL, CLU and 18 S rRNA, used for normalization of data, were quantified by use of real-time PCR and Taqman primers. Finally, we used two independent methods, flow cytometric analysis of single cells and ELISA assays of homogenates of whole testis biopsies, to compare amou |
---|---|
ISSN: | 0268-1161 1460-2350 |
DOI: | 10.1093/humrep/dex061 |