A Novel Method of Synthesizing Graphene for Electronic Device Applications

This article reports a novel and efficient method to synthesize graphene using a thermal decomposition process. In this method, silicon carbide (SiC) thin films grown on Si(100) wafers with an AlN buffer layer were used as substrates. CO₂ laser beam heating, without vacuum or controlled atmosphere,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2018-06, Vol.11 (7), p.1120
Hauptverfasser: Galvão, Nierlly, Vasconcelos, Getúlio, Pessoa, Rodrigo, Machado, João, Guerino, Marciel, Fraga, Mariana, Rodrigues, Bruno, Camus, Julien, Djouadi, Abdou, Maciel, Homero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article reports a novel and efficient method to synthesize graphene using a thermal decomposition process. In this method, silicon carbide (SiC) thin films grown on Si(100) wafers with an AlN buffer layer were used as substrates. CO₂ laser beam heating, without vacuum or controlled atmosphere, was applied for SiC thermal decomposition. The physical, chemical, morphological, and electrical properties of the laser-produced graphene were investigated for different laser energy densities. The results demonstrate that graphene was produced in the form of small islands with quality, density, and properties depending on the applied laser energy density. Furthermore, the produced graphene exhibited a sheet resistance characteristic similar to graphene grown on mono-crystalline SiC wafers, which indicates its potential for electronic device applications.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma11071120