Nitric oxide acts upstream of ethylene in cell wall phosphorus reutilization in phosphorus-deficient rice

Nitric oxide (NO) and ethylene are both involved in cell wall phosphorus (P) reutilization in P-deficient rice; however, the crosstalk between them remains unclear. In the present study using P-deficient ‘Nipponbare’ (Nip), root NO accumulation significantly increased after 1 h and reached a maximum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2017-01, Vol.68 (3), p.753-760
Hauptverfasser: Zhu, Xiao Fang, Zhu, Chun Quan, Wang, Chao, Dong, Xiao Ying, Shen, Ren Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitric oxide (NO) and ethylene are both involved in cell wall phosphorus (P) reutilization in P-deficient rice; however, the crosstalk between them remains unclear. In the present study using P-deficient ‘Nipponbare’ (Nip), root NO accumulation significantly increased after 1 h and reached a maximum at 3 h, while ethylene production significantly increased after 3 h and reached a maximum at 6 h, indicating NO responded more quickly than ethylene. Irrespective of P status, addition of the NO donor sodium nitroprusside (SNP) significantly increased while the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) significantly decreased the production of ethylene, while neither the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) nor the ethylene inhibitor aminoethoxyvinylglycine (AVG) had any influence on NO accumulation, suggesting NO acted upstream of ethylene. Under P-deficient conditions, SNP and ACC alone significantly increased root soluble P content through increasing pectin content, and c-PTIO addition to the ACC treatment still showed the same tendency; however, AVG+SNP treatment had no effect, further indicating that ethylene was the downstream signal affecting pectin content. The expression of the phosphate transporter gene OsPT2 showed the same tendency as the NO–ethylene–pectin pathway. Taken together, we conclude that ethylene functions downstream of NO in cell wall P reutilization in P-deficient rice.
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/erw480