Fractional-Order Deep Backpropagation Neural Network

In recent years, the research of artificial neural networks based on fractional calculus has attracted much attention. In this paper, we proposed a fractional-order deep backpropagation (BP) neural network model with L2 regularization. The proposed network was optimized by the fractional gradient de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2018-01, Vol.2018 (2018), p.1-10
Hauptverfasser: Bao, Chunhui, Zhang, Yi, Pu, Yifei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, the research of artificial neural networks based on fractional calculus has attracted much attention. In this paper, we proposed a fractional-order deep backpropagation (BP) neural network model with L2 regularization. The proposed network was optimized by the fractional gradient descent method with Caputo derivative. We also illustrated the necessary conditions for the convergence of the proposed network. The influence of L2 regularization on the convergence was analyzed with the fractional-order variational method. The experiments have been performed on the MNIST dataset to demonstrate that the proposed network was deterministically convergent and can effectively avoid overfitting.
ISSN:1687-5265
1687-5273
DOI:10.1155/2018/7361628