Intrinsic Functional Connectivity Resembles Cortical Architecture at Various Levels of Isoflurane Anesthesia

Abstract Cortical single neuron activity and local field potential patterns change at different depths of general anesthesia. Here, we investigate the associated network level changes of functional connectivity. We recorded ongoing electrocorticographic (ECoG) activity from temporo-parieto-occipital...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2018-08, Vol.28 (8), p.2991-3003
Hauptverfasser: Fischer, Felix, Pieper, Florian, Galindo-Leon, Edgar, Engler, Gerhard, Hilgetag, Claus C, Engel, Andreas K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Cortical single neuron activity and local field potential patterns change at different depths of general anesthesia. Here, we investigate the associated network level changes of functional connectivity. We recorded ongoing electrocorticographic (ECoG) activity from temporo-parieto-occipital cortex of 6 ferrets at various levels of isoflurane/nitrous oxide anesthesia and determined functional connectivity by computing amplitude envelope correlations. Through hierarchical clustering, we derived typical connectivity patterns corresponding to light, intermediate and deep anesthesia. Generally, amplitude correlation strength increased strongly with depth of anesthesia across all cortical areas and frequency bands. This was accompanied, at the deepest level, by the emergence of burst-suppression activity in the ECoG signal and a change of the spectrum of the amplitude envelope. Normalization of functional connectivity to the distribution of correlation coefficients showed that the topographical patterns remained similar across depths of anesthesia, reflecting the functional association of the underlying cortical areas. Thus, while strength and temporal properties of amplitude co-modulation vary depending on the activity of local neural circuits, their network-level interaction pattern is presumably most strongly determined by the underlying structural connectivity.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhy114