Core–Shell Microneedle Gel for Self-Regulated Insulin Delivery
A bioinspired glucose-responsive insulin delivery system for self-regulation of blood glucose levels is desirable for improving health and quality of life outcomes for patients with type 1 and advanced type 2 diabetes. Here we describe a painless core–shell microneedle array patch consisting of degr...
Gespeichert in:
Veröffentlicht in: | ACS nano 2018-03, Vol.12 (3), p.2466-2473 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A bioinspired glucose-responsive insulin delivery system for self-regulation of blood glucose levels is desirable for improving health and quality of life outcomes for patients with type 1 and advanced type 2 diabetes. Here we describe a painless core–shell microneedle array patch consisting of degradable cross-linked gel for smart insulin delivery with rapid responsiveness and excellent biocompatibility. This gel-based device can partially dissociate and subsequently release insulin when triggered by hydrogen peroxide (H2O2) generated during the oxidation of glucose by a glucose-specific enzyme covalently attached inside the gel. Importantly, the H2O2-responsive microneedles are coated with a thin-layer embedding H2O2-scavenging enzyme, thus mimicking the complementary function of enzymes in peroxisomes to protect normal tissues from injury caused by oxidative stress. Utilizing a chemically induced type 1 diabetic mouse model, we demonstrated that this smart insulin patch with a bioresponsive core and protective shell could effectively regulate the blood glucose levels within a normal range with improved biocompatibility. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.7b08152 |