Rewiring T-cell responses to soluble factors with chimeric antigen receptors

Chimeric antigen receptor (CAR)-expressing T cells were engineered to recognize soluble protein ligands that, by inducing CAR dimerization, mechanically couple ligand binding and receptor signaling to produce immune effector molecules. Chimeric antigen receptor (CAR)-expressing T cells targeting sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2018-03, Vol.14 (3), p.317-324
Hauptverfasser: Chang, ZeNan L, Lorenzini, Michael H, Chen, Ximin, Tran, Uyen, Bangayan, Nathanael J, Chen, Yvonne Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chimeric antigen receptor (CAR)-expressing T cells were engineered to recognize soluble protein ligands that, by inducing CAR dimerization, mechanically couple ligand binding and receptor signaling to produce immune effector molecules. Chimeric antigen receptor (CAR)-expressing T cells targeting surface-bound tumor antigens have yielded promising clinical outcomes, with two CD19 CAR-T cell therapies recently receiving FDA approval for the treatment of B-cell malignancies. The adoption of CARs for the recognition of soluble ligands, a distinct class of biomarkers in physiology and disease, could considerably broaden the utility of CARs in disease treatment. In this study, we demonstrate that CAR-T cells can be engineered to respond robustly to diverse soluble ligands, including the CD19 ectodomain, GFP variants, and transforming growth factor beta (TGF-β). We additionally show that CAR signaling in response to soluble ligands relies on ligand-mediated CAR dimerization and that CAR responsiveness to soluble ligands can be fine-tuned by adjusting the mechanical coupling between the CAR's ligand-binding and signaling domains. Our results support a role for mechanotransduction in CAR signaling and demonstrate an approach for systematically engineering immune-cell responses to soluble, extracellular ligands.
ISSN:1552-4450
1552-4469
DOI:10.1038/nchembio.2565