COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking

Abstract The identification of protein-ligand binding sites is critical to protein function annotation and drug discovery. The consensus algorithm COACH developed by us represents one of the most efficient approaches to protein-ligand binding sites prediction. One of the most commonly seen issues wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2018-07, Vol.46 (W1), p.W438-W442
Hauptverfasser: Wu, Qi, Peng, Zhenling, Zhang, Yang, Yang, Jianyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The identification of protein-ligand binding sites is critical to protein function annotation and drug discovery. The consensus algorithm COACH developed by us represents one of the most efficient approaches to protein-ligand binding sites prediction. One of the most commonly seen issues with the COACH prediction are the low quality of the predicted ligand-binding poses, which usually have severe steric clashes to the protein structure. Here, we present COACH-D, an enhanced version of COACH by utilizing molecular docking to refine the ligand-binding poses. The input to the COACH-D server is the amino acid sequence or the three-dimensional structure of a query protein. In addition, the users can also submit their own ligand of interest. For each job submission, the COACH algorithm is first used to predict the protein-ligand binding sites. The ligands from the users or the templates are then docked into the predicted binding pockets to build their complex structures. Blind tests show that the algorithm significantly outperforms other ligand-binding sites prediction methods. Benchmark tests show that the steric clashes between the ligand and the protein structures in the COACH models are reduced by 85% after molecular docking in COACH-D. The COACH-D server is freely available to all users at http://yanglab.nankai.edu.cn/COACH-D/.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gky439