Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures

Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2018-05, Vol.17 (5), p.456-463
Hauptverfasser: Lu, George J., Farhadi, Arash, Szablowski, Jerzy O., Lee-Gosselin, Audrey, Barnes, Samuel R., Lakshmanan, Anupama, Bourdeau, Raymond W., Shapiro, Mikhail G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of GVs, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities. Gas-filled vesicles derived from photosynthetic microbes are shown to elicit magnetic resonance imaging contrast in vitro and in vivo with the potential for acoustically modulated multiplexing and molecular sensing.
ISSN:1476-1122
1476-4660
DOI:10.1038/s41563-018-0023-7