Sustainable p-type copper selenide solar material with ultra-large absorption coefficient† †Electronic supplementary information (ESI) available: X-ray crystallographic data, in CIF format, for the single crystal structure refinements of Cu4TiSe4 at 300 K. Tables S1–S3 and Fig. S1–S9. see DOI: 10.1039/c8sc00873f

We report the synthesis of CTSe, a p-type titanium copper selenide semiconductor. Its band gap (1.15 eV) and its ultra-large absorption coefficient (10 5 cm –1 ) in the entire visible range make it a promising Earth-abundant solar absorber material. Earth-abundant solar absorber materials with large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2018-05, Vol.9 (24), p.5405-5414
Hauptverfasser: Chen, Erica M., Williams, Logan, Olvera, Alan, Zhang, Cheng, Zhang, Mingfei, Shi, Guangsha, Heron, John T., Qi, Liang, Guo, L. Jay, Kioupakis, Emmanouil, Poudeu, Pierre F. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the synthesis of CTSe, a p-type titanium copper selenide semiconductor. Its band gap (1.15 eV) and its ultra-large absorption coefficient (10 5 cm –1 ) in the entire visible range make it a promising Earth-abundant solar absorber material. Earth-abundant solar absorber materials with large optical absorption coefficients in the visible enable the fabrication of low-cost high-efficiency single and multi-junction thin-film solar cells. Here, we report a new p-type semiconductor, Cu 4 TiSe 4 (CTSe), featuring indirect (1.15 eV) and direct (1.34 eV) band gaps in the optimal range for solar absorber materials. CTSe crystallizes in a new noncentrosymmetric cubic structure (space group F 4[combining macron]3 c ) in which CuSe 4 tetrahedra share edges and corners to form octahedral anionic clusters, [Cu 4 Se 4 ] 4– , which in turn share corners to build the three-dimensional framework, with Ti 4+ ions located at tetrahedral interstices within the channels. The unique crystal structure and the Ti 3d orbital character of the conduction band of CTSe give rise to near-optimal band gap values and ultra-large absorption coefficients (larger than 10 5 cm –1 ) throughout the visible range, which are promising for scalable low-cost high-efficiency CTSe-based thin-film solar cells.
ISSN:2041-6520
2041-6539
DOI:10.1039/c8sc00873f