Viscoelastic properties of vimentin originate from nonequilibrium conformational changes

Structure and dynamics of living matter rely on design principles fundamentally different from concepts of traditional material science. Specialized intracellular filaments in the cytoskeleton permit living systems to divide, migrate, and grow with a high degree of variability and durability. Among...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2018-06, Vol.4 (6), p.eaat1161
Hauptverfasser: Block, Johanna, Witt, Hannes, Candelli, Andrea, Danes, Jordi Cabanas, Peterman, Erwin J G, Wuite, Gijs J L, Janshoff, Andreas, Köster, Sarah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structure and dynamics of living matter rely on design principles fundamentally different from concepts of traditional material science. Specialized intracellular filaments in the cytoskeleton permit living systems to divide, migrate, and grow with a high degree of variability and durability. Among the three filament systems, microfilaments, microtubules, and intermediate filaments (IFs), the physical properties of IFs and their role in cellular mechanics are the least well understood. We use optical trapping of individual vimentin filaments to investigate energy dissipation, strain history dependence, and creep behavior of stretched filaments. By stochastic and numerical modeling, we link our experimental observations to the peculiar molecular architecture of IFs. We find that individual vimentin filaments display tensile memory and are able to dissipate more than 70% of the input energy. We attribute these phenomena to distinct nonequilibrium folding and unfolding of α helices in the vimentin monomers constituting the filaments.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aat1161