Cell-subtype-specific changes in adenosine pathways in schizophrenia
Prior work in animal models implicates abnormalities of adenosine metabolism in astrocytes as a possible pathophysiological mechanism underlying the symptoms of schizophrenia. In the present study, we sought to reverse-translate these findings back to the human brain in schizophrenia, focusing on th...
Gespeichert in:
Veröffentlicht in: | Neuropsychopharmacology (New York, N.Y.) N.Y.), 2018-07, Vol.43 (8), p.1667-1674 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prior work in animal models implicates abnormalities of adenosine metabolism in astrocytes as a possible pathophysiological mechanism underlying the symptoms of schizophrenia. In the present study, we sought to reverse-translate these findings back to the human brain in schizophrenia, focusing on the following questions: (1) Which components of the adenosine system are dysregulated in schizophrenia, and (2) are these changes limited to astrocytes? To address these questions, we captured enriched populations of DLPFC pyramidal neurons and astrocytes from schizophrenia and control subjects using laser capture microdissection and assessed expression of adenosine system components using qPCR. Interestingly, we found changes in enriched populations of astrocytes and neurons spanning metabolic and catabolic pathways. Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1) and ENTPD2 mRNA levels were significantly decreased (p |
---|---|
ISSN: | 0893-133X 1740-634X |
DOI: | 10.1038/s41386-018-0028-6 |