Enhanced near-surface ozone under heatwave conditions in a Mediterranean island

Near-surface ozone is enhanced under particular chemical reactions and physical processes. This study showed the seasonal variation of near-surface ozone in Nicosia, Cyprus and focused in summers when the highest ozone levels were noted using a seven year hourly dataset from 2007 to 2014. The origin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-06, Vol.8 (1), p.9191-10, Article 9191
Hauptverfasser: Pyrgou, Andri, Hadjinicolaou, Panos, Santamouris, Mat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Near-surface ozone is enhanced under particular chemical reactions and physical processes. This study showed the seasonal variation of near-surface ozone in Nicosia, Cyprus and focused in summers when the highest ozone levels were noted using a seven year hourly dataset from 2007 to 2014. The originality of this study is that it examines how ozone levels changed under heatwave conditions (defined as 4 consecutive days with daily maximum temperature over 39 °C) with emphasis on specific air quality and meteorological parameters with respect to non-heatwave summer conditions. The influencing parameters had a medium-strong positive correlation of ozone with temperature, UVA and UVB at daytime which increased by about 35% under heatwave conditions. The analysis of the wind pattern showed a small decrease of wind speed during heatwaves leading to stagnant weather conditions, but also revealed a steady diurnal cycle of wind speed reaching a peak at noon, when the highest ozone levels were noted. The negative correlation of NOx budget with ozone was further increased under heatwave conditions leading to steeper lows of ozone in the morning. In summary, this research encourages further analysis into the persistent weather conditions prevalent during HWs stimulating ozone formation for higher temperatures.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-27590-z