Candidates to replace R-12 as a radiator gas in Cherenkov detectors
Dichlorodifluoromethane (R-12) has been widely used as a radiator gas in pressure threshold Cherenkov detectors for high-energy particle physics. However, that compound is becoming unavailable due to the Montreal Protocol. To find a replacement with suitably high refractive index, we use a combinati...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2018-06, Vol.425, p.38-42 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dichlorodifluoromethane (R-12) has been widely used as a radiator gas in pressure threshold Cherenkov detectors for high-energy particle physics. However, that compound is becoming unavailable due to the Montreal Protocol. To find a replacement with suitably high refractive index, we use a combination of theory and experiment to examine the polarizability and refractivity of several non-ozone-depleting compounds. Our measurements show that the fourth-generation refrigerants R-1234yf (2,3,3,3-tetrafluoropropene) and R-1234ze(E) (trans-1,3,3,3-tetrafluoropropene) have sufficient refractivity to replace R-12 in this application. If the slight flammability of these compounds is a problem, two nonflammable alternatives are R-218 (octafluoropropane), which has a high Global Warming Potential, and R-13I1 (trifluoroiodomethane), which has low Ozone Depletion Potential and Global Warming Potential but may not be sufficiently inert. |
---|---|
ISSN: | 0168-583X 1872-9584 |
DOI: | 10.1016/j.nimb.2018.04.006 |