miR-21 depletion in macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy

MicroRNA-21 (miR-21) is one of the most abundant microRNAs in mammalian cells. It has been intensively studied for its role in regulating apoptosis and oncogenic transformation. However, the impact of miR-21 on host anti-tumor immunity remains unknown. Tumor-associated macrophages are a major leukoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2018-06, Vol.37 (23), p.3151-3165
Hauptverfasser: Xi, Jiajia, Huang, Qian, Wang, Lei, Ma, Xiaodong, Deng, Qipan, Kumar, Munish, Zhou, Zhiyuan, Li, Ling, Zeng, Zhaoyang, Young, Ken H., Zhang, Mingzhi, Li, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MicroRNA-21 (miR-21) is one of the most abundant microRNAs in mammalian cells. It has been intensively studied for its role in regulating apoptosis and oncogenic transformation. However, the impact of miR-21 on host anti-tumor immunity remains unknown. Tumor-associated macrophages are a major leukocyte type that infiltrates tumors and predominantly develops into immunosuppressive, tumor-promoting M2-like macrophages. In contrast, the pro-inflammatory M1−like macrophages have tumoricidal activity. In this study, we show that genetic deficiency of miR-21 promotes the polarization of macrophages toward an M1-like phenotype in vivo and in vitro in the presence of tumor cells; thus it confers host mice with enhanced anti-tumor immunity. By downregulating JAK2 and STAT1, miR-21 inhibits the IFN-γ-induced STAT1 signaling pathway, which is required for macrophage M1 polarization. We also show that the expression of miR-21 in macrophages is regulated upon polarization stimuli as well as upon macrophages co-culturing with tumor cells. Thus, tumor cells may stimulate miR-21 expression in tumor-associated macrophages to prevent tumoricidal M1 polarization. However, augmented STAT1 signaling mediated by miR-21 deficiency upregulates PD-L1 expression in macrophages, which is known to inhibit phagocytic anti-tumor activity. This adverse effect can be alleviated by PD-1 blockade; indeed, miR-21 depletion in macrophages and PD-1 antibody treatment offer superior anti-tumor activity than either agent alone. These studies shed lights on potential application of the combination of miR-21 inhibition and immune checkpoint blockade to target the tumor microenvironment.
ISSN:0950-9232
1476-5594
DOI:10.1038/s41388-018-0178-3