Calcium/calmodulin-dependent protein kinase II regulation of IKs during sustained β-adrenergic receptor stimulation

Sustained β-adrenergic receptor (β-AR) stimulation causes pathophysiological changes during heart failure (HF), including inhibition of the slow component of the delayed rectifier potassium current (IKs). Aberrant calcium handling, including increased activation of calcium/calmodulin-dependent prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heart rhythm 2018-06, Vol.15 (6), p.895-904
Hauptverfasser: Shugg, Tyler, Johnson, Derrick E., Shao, Minghai, Lai, Xianyin, Witzmann, Frank, Cummins, Theodore R., Rubart-Von-der Lohe, Michael, Hudmon, Andy, Overholser, Brian R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sustained β-adrenergic receptor (β-AR) stimulation causes pathophysiological changes during heart failure (HF), including inhibition of the slow component of the delayed rectifier potassium current (IKs). Aberrant calcium handling, including increased activation of calcium/calmodulin-dependent protein kinase II (CaMKII), contributes to arrhythmia development during HF. The purpose of this study was to investigate CaMKII regulation of KCNQ1 (pore-forming subunit of IKs) during sustained β-AR stimulation and associated functional implications on IKs. KCNQ1 phosphorylation was assessed using liquid chromatography-tandem mass spectrometry after sustained β-AR stimulation with isoproterenol (ISO). Peptide fragments corresponding to KCNQ1 residues were synthesized to identify CaMKII phosphorylation at the identified sites. Dephosphorylated (alanine) and phosphorylated (aspartic acid) mimics were introduced at identified residues. Whole-cell, voltage-clamp experiments were performed in human endothelial kidney 293 cells coexpressing wild-type or mutant KCNQ1 and KCNE1 (auxiliary subunit) during ISO treatment or lentiviral δCaMKII overexpression. Novel KCNQ1 carboxy-terminal sites were identified with enhanced phosphorylation during sustained β-AR stimulation at T482 and S484. S484 peptides demonstrated the strongest δCaMKII phosphorylation. Sustained β-AR stimulation reduced IKs activation (P = .02 vs control) similar to the phosphorylated mimic (P = .62 vs sustained β-AR). Individual phosphorylated mimics at S484 (P = .04) but not at T482 (P = .17) reduced IKs function. Treatment with CN21 (CaMKII inhibitor) reversed the reductions in IKs vs CN21-Alanine control (P < .01). δCaMKII overexpression reduced IKs similar to ISO treatment in wild type (P < .01) but not in the dephosphorylated S484 mimic (P = .99). CaMKII regulates KCNQ1 at S484 during sustained β-AR stimulation to inhibit IKs. The ability of CaMKII to inhibit IKs may contribute to arrhythmogenicity during HF.
ISSN:1547-5271
1556-3871
DOI:10.1016/j.hrthm.2018.01.024