An operando X-ray diffraction study of chloroaluminate anion-graphite intercalation in aluminum batteries
We investigated rechargeable aluminum (Al) batteries composed of an Al negative electrode, a graphite positive electrode, and an ionic liquid (IL) electrolyte at temperatures down to −40 °C. The reversible battery discharge capacity at low temperatures could be superior to that at room temperature....
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-05, Vol.115 (22), p.5670-5675 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated rechargeable aluminum (Al) batteries composed of an Al negative electrode, a graphite positive electrode, and an ionic liquid (IL) electrolyte at temperatures down to −40 °C. The reversible battery discharge capacity at low temperatures could be superior to that at room temperature. In situ/operando electrochemical and synchrotron X-ray diffraction experiments combined with theoretical modeling revealed stable AlCl₄⁻/graphite intercalation up to stage 3 at low temperatures, whereas intercalation was reversible up to stage 4 at room temperature (RT). The higher-degree anion/graphite intercalation at low temperatures affords rechargeable Al battery with higher discharge voltage (up to 2.5 V, a record for Al battery) and energy density. A remarkable cycle life of >20,000 cycles at a rate of 6C (10 minutes charge time) was achievable for Al battery operating at low temperatures, corresponding to a >50-year battery life if charged/discharged once daily. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1803576115 |