Nanophotonic particle simulation and inverse design using artificial neural networks
We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate su...
Gespeichert in:
Veröffentlicht in: | Science advances 2018-06, Vol.4 (6), p.eaar4206-eaar4206 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eaar4206 |
---|---|
container_issue | 6 |
container_start_page | eaar4206 |
container_title | Science advances |
container_volume | 4 |
creator | Peurifoy, John Shen, Yichen Jing, Li Yang, Yi Cano-Renteria, Fidel DeLacy, Brendan G Joannopoulos, John D Tegmark, Max Soljačić, Marin |
description | We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical. |
doi_str_mv | 10.1126/sciadv.aar4206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5983917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2050481651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-5b77c7966a4e841bea861590c32f95b9dc2cd271799bc80d03b415abd6085f2b3</originalsourceid><addsrcrecordid>eNpVUT1PwzAUtBCIVqUrI8rIkmI7tmMvSKjiS6pgKbPlOE5rSOxgJ0X8e1JaqjLdk969e6c7AC4RnCGE2U3UVpWbmVKBYMhOwBhnOU0xJfz0aB6BaYzvEEJEGKNInIMRFpxxRuAYLF-U8-3ad95ZnbQqdFbXJom26WvVWe8S5crEuo0J0SSliXblkj5at0q23MoOFurEmT78Qvflw0e8AGeVqqOZ7nEC3h7ul_OndPH6-Dy_W6SaUNaltMhznQvGFDGcoMIozhAVUGe4ErQQpca6xDnKhSg0hyXMCoKoKkoGOa1wkU3A7U637YvGlNq4brAh22AbFb6lV1b-3zi7liu_kVTwTKB8ELjeCwT_2ZvYycZGbepaOeP7KDGkkHA0pDZQZzuqDj7GYKrDGwTltg25a0Pu2xgOro7NHeh_2Wc_ciWKdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050481651</pqid></control><display><type>article</type><title>Nanophotonic particle simulation and inverse design using artificial neural networks</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Peurifoy, John ; Shen, Yichen ; Jing, Li ; Yang, Yi ; Cano-Renteria, Fidel ; DeLacy, Brendan G ; Joannopoulos, John D ; Tegmark, Max ; Soljačić, Marin</creator><creatorcontrib>Peurifoy, John ; Shen, Yichen ; Jing, Li ; Yang, Yi ; Cano-Renteria, Fidel ; DeLacy, Brendan G ; Joannopoulos, John D ; Tegmark, Max ; Soljačić, Marin</creatorcontrib><description>We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aar4206</identifier><identifier>PMID: 29868640</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Computer Science ; Optics ; SciAdv r-articles</subject><ispartof>Science advances, 2018-06, Vol.4 (6), p.eaar4206-eaar4206</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2018 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-5b77c7966a4e841bea861590c32f95b9dc2cd271799bc80d03b415abd6085f2b3</citedby><cites>FETCH-LOGICAL-c456t-5b77c7966a4e841bea861590c32f95b9dc2cd271799bc80d03b415abd6085f2b3</cites><orcidid>0000-0002-7184-5831 ; 0000-0003-2879-4968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983917/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983917/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29868640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peurifoy, John</creatorcontrib><creatorcontrib>Shen, Yichen</creatorcontrib><creatorcontrib>Jing, Li</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Cano-Renteria, Fidel</creatorcontrib><creatorcontrib>DeLacy, Brendan G</creatorcontrib><creatorcontrib>Joannopoulos, John D</creatorcontrib><creatorcontrib>Tegmark, Max</creatorcontrib><creatorcontrib>Soljačić, Marin</creatorcontrib><title>Nanophotonic particle simulation and inverse design using artificial neural networks</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.</description><subject>Computer Science</subject><subject>Optics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVUT1PwzAUtBCIVqUrI8rIkmI7tmMvSKjiS6pgKbPlOE5rSOxgJ0X8e1JaqjLdk969e6c7AC4RnCGE2U3UVpWbmVKBYMhOwBhnOU0xJfz0aB6BaYzvEEJEGKNInIMRFpxxRuAYLF-U8-3ad95ZnbQqdFbXJom26WvVWe8S5crEuo0J0SSliXblkj5at0q23MoOFurEmT78Qvflw0e8AGeVqqOZ7nEC3h7ul_OndPH6-Dy_W6SaUNaltMhznQvGFDGcoMIozhAVUGe4ErQQpca6xDnKhSg0hyXMCoKoKkoGOa1wkU3A7U637YvGlNq4brAh22AbFb6lV1b-3zi7liu_kVTwTKB8ELjeCwT_2ZvYycZGbepaOeP7KDGkkHA0pDZQZzuqDj7GYKrDGwTltg25a0Pu2xgOro7NHeh_2Wc_ciWKdQ</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Peurifoy, John</creator><creator>Shen, Yichen</creator><creator>Jing, Li</creator><creator>Yang, Yi</creator><creator>Cano-Renteria, Fidel</creator><creator>DeLacy, Brendan G</creator><creator>Joannopoulos, John D</creator><creator>Tegmark, Max</creator><creator>Soljačić, Marin</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7184-5831</orcidid><orcidid>https://orcid.org/0000-0003-2879-4968</orcidid></search><sort><creationdate>201806</creationdate><title>Nanophotonic particle simulation and inverse design using artificial neural networks</title><author>Peurifoy, John ; Shen, Yichen ; Jing, Li ; Yang, Yi ; Cano-Renteria, Fidel ; DeLacy, Brendan G ; Joannopoulos, John D ; Tegmark, Max ; Soljačić, Marin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-5b77c7966a4e841bea861590c32f95b9dc2cd271799bc80d03b415abd6085f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer Science</topic><topic>Optics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peurifoy, John</creatorcontrib><creatorcontrib>Shen, Yichen</creatorcontrib><creatorcontrib>Jing, Li</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Cano-Renteria, Fidel</creatorcontrib><creatorcontrib>DeLacy, Brendan G</creatorcontrib><creatorcontrib>Joannopoulos, John D</creatorcontrib><creatorcontrib>Tegmark, Max</creatorcontrib><creatorcontrib>Soljačić, Marin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peurifoy, John</au><au>Shen, Yichen</au><au>Jing, Li</au><au>Yang, Yi</au><au>Cano-Renteria, Fidel</au><au>DeLacy, Brendan G</au><au>Joannopoulos, John D</au><au>Tegmark, Max</au><au>Soljačić, Marin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanophotonic particle simulation and inverse design using artificial neural networks</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2018-06</date><risdate>2018</risdate><volume>4</volume><issue>6</issue><spage>eaar4206</spage><epage>eaar4206</epage><pages>eaar4206-eaar4206</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>29868640</pmid><doi>10.1126/sciadv.aar4206</doi><orcidid>https://orcid.org/0000-0002-7184-5831</orcidid><orcidid>https://orcid.org/0000-0003-2879-4968</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2018-06, Vol.4 (6), p.eaar4206-eaar4206 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5983917 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Computer Science Optics SciAdv r-articles |
title | Nanophotonic particle simulation and inverse design using artificial neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A50%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanophotonic%20particle%20simulation%20and%20inverse%20design%20using%20artificial%20neural%20networks&rft.jtitle=Science%20advances&rft.au=Peurifoy,%20John&rft.date=2018-06&rft.volume=4&rft.issue=6&rft.spage=eaar4206&rft.epage=eaar4206&rft.pages=eaar4206-eaar4206&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aar4206&rft_dat=%3Cproquest_pubme%3E2050481651%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2050481651&rft_id=info:pmid/29868640&rfr_iscdi=true |