Nanophotonic particle simulation and inverse design using artificial neural networks

We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2018-06, Vol.4 (6), p.eaar4206-eaar4206
Hauptverfasser: Peurifoy, John, Shen, Yichen, Jing, Li, Yang, Yi, Cano-Renteria, Fidel, DeLacy, Brendan G, Joannopoulos, John D, Tegmark, Max, Soljačić, Marin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aar4206