Heterostructural Graphene Quantum Dot/MnO2 Nanosheets toward High‐Potential Window Electrodes for High‐Performance Supercapacitors
The potential window of aqueous supercapacitors is limited by the theoretical value (≈1.23 V) and is usually lower than ≈1 V, which hinders further improvements for energy density. Here, a simple and scalable method is developed to fabricate unique graphene quantum dot (GQD)/MnO2 heterostructural el...
Gespeichert in:
Veröffentlicht in: | Advanced science 2018-05, Vol.5 (5), p.1700887-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The potential window of aqueous supercapacitors is limited by the theoretical value (≈1.23 V) and is usually lower than ≈1 V, which hinders further improvements for energy density. Here, a simple and scalable method is developed to fabricate unique graphene quantum dot (GQD)/MnO2 heterostructural electrodes to extend the potential window to 0–1.3 V for high‐performance aqueous supercapacitor. The GQD/MnO2 heterostructural electrode is fabricated by GQDs in situ formed on the surface of MnO2 nanosheet arrays with good interface bonding by the formation of MnOC bonds. Further, it is interesting to find that the potential window can be extended to 1.3 V by a potential drop in the built‐in electric field of the GQD/MnO2 heterostructural region. Additionally, the specific capacitance up to 1170 F g−1 at a scan rate of 5 mV s−1 (1094 F g−1 at 0–1 V) and cycle performance (92.7%@10 000 cycles) between 0 and 1.3 V are observed. A 2.3 V aqueous GQD/MnO2‐3//nitrogen‐doped graphene ASC is assembled, which exhibits the high energy density of 118 Wh kg−1 at the power density of 923 W kg−1. This work opens new opportunities for developing high‐voltage aqueous supercapacitors using in situ formed heterostructures to further increase energy density.
An in situ formed graphene quantum dot/MnO2 heterostructural electrode is fabricated via the formation of MnOC bonds in the interface during a plasma‐enhanced chemical vapor deposition process using CO2 as carbon source. It is found that the potential window can be extended to 1.3 V by a voltage drop in the heterostructural region, which exhibits superior specific capacitance and ultrahigh energy density. |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.201700887 |