The Crystal Structure of the R280K Mutant of Human p53 Explains the Loss of DNA Binding

The p53 tumor suppressor is widely found to be mutated in human cancer. This protein is regarded as a molecular hub regulating different cell responses, namely cell death. Compelling data have demonstrated that the impairment of p53 activity correlates with tumor development and maintenance. For the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2018-04, Vol.19 (4), p.1184
Hauptverfasser: Gomes, Ana Sara, Trovão, Filipa, Andrade Pinheiro, Benedita, Freire, Filipe, Gomes, Sara, Oliveira, Carla, Domingues, Lucília, Romão, Maria João, Saraiva, Lucília, Carvalho, Ana Luísa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The p53 tumor suppressor is widely found to be mutated in human cancer. This protein is regarded as a molecular hub regulating different cell responses, namely cell death. Compelling data have demonstrated that the impairment of p53 activity correlates with tumor development and maintenance. For these reasons, the reactivation of p53 function is regarded as a promising strategy to halt cancer. In the present work, the recombinant mutant p53R280K DNA binding domain (DBD) was produced for the first time, and its crystal structure was determined in the absence of DNA to a resolution of 2.0 Å. The solved structure contains four molecules in the asymmetric unit, four zinc(II) ions, and 336 water molecules. The structure was compared with the wild-type p53 DBD structure, isolated and in complex with DNA. These comparisons contributed to a deeper understanding of the mutant p53R280K structure, as well as the loss of DNA binding related to halted transcriptional activity. The structural information derived may also contribute to the rational design of mutant p53 reactivating molecules with potential application in cancer treatment. We thank Gilberto Fronza (from Mutagenesi e Prevenzione Oncologica, Ospedale Policlinico San Martino, Genova, Italy), for providing us with the pLS76 vector. We acknowledge the European Synchrotron Radiation Facility for the provision of synchrotron radiation facilities and access to beamline ID30B. This work received financial support from the European Union (FEDER, Fundo Europeu de Desenvolvimento Regional, funds POCI/01/0145/FEDER/007728 through Programa Operacional Factores de Competitividade–COMPETE) and National Funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) under the Partnership Agreement PT2020 UID/MULTI/04378/2013, and projects (3599-PPCDT) PTDC/DTP-FTO/1981/2014–POCI-01-0145-FEDER-016581 and RECI/BBB-BEP/0124/2012. FCT fellowships: PD/BD/114046/2015 (Ana Sara Gomes) and SFRH/BD/96189/2013 (Sara Gomes) (thanks FCT PhD Doctoral Programme BiotechHealth), and SFRH/BPD/110640/2015 (Carla Oliveira).
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms19041184