Differential Data Augmentation Techniques for Medical Imaging Classification Tasks

Data augmentation is an essential part of training discriminative Convolutional Neural Networks (CNNs). A variety of augmentation strategies, including horizontal flips, random crops, and principal component analysis (PCA), have been proposed and shown to capture important characteristics of natural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2017, Vol.2017, p.979-984
Hauptverfasser: Hussain, Zeshan, Gimenez, Francisco, Yi, Darvin, Rubin, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data augmentation is an essential part of training discriminative Convolutional Neural Networks (CNNs). A variety of augmentation strategies, including horizontal flips, random crops, and principal component analysis (PCA), have been proposed and shown to capture important characteristics of natural images. However, while data augmentation has been commonly used for deep learning in medical imaging, little work has been done to determine which augmentation strategies best capture medical image statistics, leading to more discriminative models. This work compares augmentation strategies and shows that the extent to which an augmented training set retains properties of the original medical images determines model performance. Specifically, augmentation strategies such as flips and gaussian filters lead to validation accuracies of 84% and 88%, respectively. On the other hand, a less effective strategy such as adding noise leads to a significantly worse validation accuracy of 66%. Finally, we show that the augmentation affects mass generation.
ISSN:1559-4076