Pregnancy-Associated Plasma Protein-aa Regulates Photoreceptor Synaptic Development to Mediate Visually Guided Behavior
To guide behavior, sensory systems detect the onset and offset of stimuli and process these distinct inputs via parallel pathways. In the retina, this strategy is implemented by splitting neural signals for light onset and offset via synapses connecting photoreceptors to ON and OFF bipolar cells, re...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2018-05, Vol.38 (22), p.5220-5236 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5236 |
---|---|
container_issue | 22 |
container_start_page | 5220 |
container_title | The Journal of neuroscience |
container_volume | 38 |
creator | Miller, Andrew H Howe, Hollis B Krause, Bryan M Friedle, Scott A Banks, Matthew I Perkins, Brian D Wolman, Marc A |
description | To guide behavior, sensory systems detect the onset and offset of stimuli and process these distinct inputs via parallel pathways. In the retina, this strategy is implemented by splitting neural signals for light onset and offset via synapses connecting photoreceptors to ON and OFF bipolar cells, respectively. It remains poorly understood which molecular cues establish the architecture of this synaptic configuration to split light-onset and light-offset signals. A mutant with reduced synapses between photoreceptors and one bipolar cell type, but not the other, could reveal a critical cue. From this approach, we report a novel synaptic role for
(
) in promoting the structure and function of cone synapses that transmit light-offset information. Electrophysiological and behavioral analyses indicated
mutant zebrafish have dysfunctional cone-to-OFF bipolar cell synapses and impaired responses to light offset, but intact cone-to-ON bipolar cell synapses and light-onset responses. Ultrastructural analyses of
mutant cones showed a lack of presynaptic domains at synapses with OFF bipolar cells.
is expressed postsynaptically to the cones during retinal synaptogenesis and encodes a secreted metalloprotease known to stimulate insulin-like growth factor 1 (IGF1) signaling. Induction of dominant-negative IGF1 receptor expression during synaptogenesis reduced light-offset responses. Conversely, stimulating IGF1 signaling at this time improved
mutants' light-offset responses and cone presynaptic structures. Together, our results indicate Pappaa-regulated IGF1 signaling as a novel pathway that establishes how cone synapses convey light-offset signals to guide behavior.
Distinct sensory inputs, like stimulus onset and offset, are often split at distinct synapses into parallel circuits for processing. In the retina, photoreceptors and ON and OFF bipolar cells form discrete synapses to split neural signals coding light onset and offset, respectively. The molecular cues that establish this synaptic configuration to specifically convey light onset or offset remain unclear. Our work reveals a novel cue:
(
), which regulates photoreceptor synaptic structure and function to specifically transmit light-offset information. Pappaa is a metalloprotease that stimulates local insulin-like growth factor 1 (IGF1) signaling. IGF1 promotes various aspects of synaptic development and function and is broadly expressed, thus requiring local regulators, like Pappaa, to govern its specificity. |
doi_str_mv | 10.1523/JNEUROSCI.0061-18.2018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5977450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036789311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-64f4824561e7e3cd6b3c82c2a21a1507d1af619f046dcad9f4bcd0e996766c8f3</originalsourceid><addsrcrecordid>eNpdkU9v0zAYxi0EYmXwFSZLXLik2I5jxxekUcY2NFi1Ma6W67xpPTlxZidF_fZztVEBp_fw_NHz6ofQCSVzWrHy47cfZ3c317eLyzkhgha0njNC6xdollVVME7oSzQjTJJCcMmP0JuU7gkhklD5Gh0xJUtVSzJDv5cR1r3p7a44TSlYZ0Zo8NKb1Bm8jGEE1xfG4BtYTz5rCS83YQwRLAz54Ntdb4bRWfwFtuDD0EE_4jHg79Dsq_Avlybj_Q6fT67JzZ9hY7YuxLfoVWt8gnfP9xjdfT37ubgorq7PLxenV4Xlqhrz-JbXjFeCgoTSNmJV2ppZZhg1tCKyoaYVVLWEi8aaRrV8ZRsCSgkphK3b8hh9euodplUHjc3zovF6iK4zcaeDcfpfpXcbvQ5bXSkpeUVywYfnghgeJkij7lyy4L3pIUxJM1IKWauS0mx9_5_1Pkyxz-9ll-K8lopU2SWeXDaGlCK0hzGU6D1bfWCr92w1rfWebQ6e_P3KIfYHZvkIMVyjwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094487905</pqid></control><display><type>article</type><title>Pregnancy-Associated Plasma Protein-aa Regulates Photoreceptor Synaptic Development to Mediate Visually Guided Behavior</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Miller, Andrew H ; Howe, Hollis B ; Krause, Bryan M ; Friedle, Scott A ; Banks, Matthew I ; Perkins, Brian D ; Wolman, Marc A</creator><creatorcontrib>Miller, Andrew H ; Howe, Hollis B ; Krause, Bryan M ; Friedle, Scott A ; Banks, Matthew I ; Perkins, Brian D ; Wolman, Marc A</creatorcontrib><description>To guide behavior, sensory systems detect the onset and offset of stimuli and process these distinct inputs via parallel pathways. In the retina, this strategy is implemented by splitting neural signals for light onset and offset via synapses connecting photoreceptors to ON and OFF bipolar cells, respectively. It remains poorly understood which molecular cues establish the architecture of this synaptic configuration to split light-onset and light-offset signals. A mutant with reduced synapses between photoreceptors and one bipolar cell type, but not the other, could reveal a critical cue. From this approach, we report a novel synaptic role for
(
) in promoting the structure and function of cone synapses that transmit light-offset information. Electrophysiological and behavioral analyses indicated
mutant zebrafish have dysfunctional cone-to-OFF bipolar cell synapses and impaired responses to light offset, but intact cone-to-ON bipolar cell synapses and light-onset responses. Ultrastructural analyses of
mutant cones showed a lack of presynaptic domains at synapses with OFF bipolar cells.
is expressed postsynaptically to the cones during retinal synaptogenesis and encodes a secreted metalloprotease known to stimulate insulin-like growth factor 1 (IGF1) signaling. Induction of dominant-negative IGF1 receptor expression during synaptogenesis reduced light-offset responses. Conversely, stimulating IGF1 signaling at this time improved
mutants' light-offset responses and cone presynaptic structures. Together, our results indicate Pappaa-regulated IGF1 signaling as a novel pathway that establishes how cone synapses convey light-offset signals to guide behavior.
Distinct sensory inputs, like stimulus onset and offset, are often split at distinct synapses into parallel circuits for processing. In the retina, photoreceptors and ON and OFF bipolar cells form discrete synapses to split neural signals coding light onset and offset, respectively. The molecular cues that establish this synaptic configuration to specifically convey light onset or offset remain unclear. Our work reveals a novel cue:
(
), which regulates photoreceptor synaptic structure and function to specifically transmit light-offset information. Pappaa is a metalloprotease that stimulates local insulin-like growth factor 1 (IGF1) signaling. IGF1 promotes various aspects of synaptic development and function and is broadly expressed, thus requiring local regulators, like Pappaa, to govern its specificity.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0061-18.2018</identifier><identifier>PMID: 29739870</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Bipolar cells ; Cones ; Electrophysiological Phenomena - physiology ; Female ; Growth factors ; Insulin ; Insulin-like growth factor I ; Insulin-Like Growth Factor I - genetics ; Insulin-Like Growth Factor I - metabolism ; Light ; Metalloendopeptidases - genetics ; Metalloendopeptidases - physiology ; Metalloproteinase ; Mutants ; Photic Stimulation ; Photoreception ; Photoreceptor Cells, Vertebrate - physiology ; Photoreceptors ; Pregnancy ; Proteins ; Psychomotor Performance - physiology ; Retina ; Retinal Bipolar Cells - physiology ; Retinal cells ; Retinal Cone Photoreceptor Cells - physiology ; Retinal Photoreceptor Cell Inner Segment - metabolism ; Retinal Photoreceptor Cell Inner Segment - physiology ; Sensory systems ; Signal transduction ; Signaling ; Structure-function relationships ; Synapses ; Synapses - physiology ; Synaptogenesis ; Zebrafish ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism ; Zebrafish Proteins - physiology</subject><ispartof>The Journal of neuroscience, 2018-05, Vol.38 (22), p.5220-5236</ispartof><rights>Copyright © 2018 the authors 0270-6474/18/385220-17$15.00/0.</rights><rights>Copyright Society for Neuroscience May 30, 2018</rights><rights>Copyright © 2018 the authors 0270-6474/18/385220-17$15.00/0 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-64f4824561e7e3cd6b3c82c2a21a1507d1af619f046dcad9f4bcd0e996766c8f3</citedby><cites>FETCH-LOGICAL-c495t-64f4824561e7e3cd6b3c82c2a21a1507d1af619f046dcad9f4bcd0e996766c8f3</cites><orcidid>0000-0002-8929-779X ; 0000-0002-9348-6542 ; 0000-0001-5203-0381 ; 0000-0002-1936-7529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977450/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977450/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29739870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Andrew H</creatorcontrib><creatorcontrib>Howe, Hollis B</creatorcontrib><creatorcontrib>Krause, Bryan M</creatorcontrib><creatorcontrib>Friedle, Scott A</creatorcontrib><creatorcontrib>Banks, Matthew I</creatorcontrib><creatorcontrib>Perkins, Brian D</creatorcontrib><creatorcontrib>Wolman, Marc A</creatorcontrib><title>Pregnancy-Associated Plasma Protein-aa Regulates Photoreceptor Synaptic Development to Mediate Visually Guided Behavior</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>To guide behavior, sensory systems detect the onset and offset of stimuli and process these distinct inputs via parallel pathways. In the retina, this strategy is implemented by splitting neural signals for light onset and offset via synapses connecting photoreceptors to ON and OFF bipolar cells, respectively. It remains poorly understood which molecular cues establish the architecture of this synaptic configuration to split light-onset and light-offset signals. A mutant with reduced synapses between photoreceptors and one bipolar cell type, but not the other, could reveal a critical cue. From this approach, we report a novel synaptic role for
(
) in promoting the structure and function of cone synapses that transmit light-offset information. Electrophysiological and behavioral analyses indicated
mutant zebrafish have dysfunctional cone-to-OFF bipolar cell synapses and impaired responses to light offset, but intact cone-to-ON bipolar cell synapses and light-onset responses. Ultrastructural analyses of
mutant cones showed a lack of presynaptic domains at synapses with OFF bipolar cells.
is expressed postsynaptically to the cones during retinal synaptogenesis and encodes a secreted metalloprotease known to stimulate insulin-like growth factor 1 (IGF1) signaling. Induction of dominant-negative IGF1 receptor expression during synaptogenesis reduced light-offset responses. Conversely, stimulating IGF1 signaling at this time improved
mutants' light-offset responses and cone presynaptic structures. Together, our results indicate Pappaa-regulated IGF1 signaling as a novel pathway that establishes how cone synapses convey light-offset signals to guide behavior.
Distinct sensory inputs, like stimulus onset and offset, are often split at distinct synapses into parallel circuits for processing. In the retina, photoreceptors and ON and OFF bipolar cells form discrete synapses to split neural signals coding light onset and offset, respectively. The molecular cues that establish this synaptic configuration to specifically convey light onset or offset remain unclear. Our work reveals a novel cue:
(
), which regulates photoreceptor synaptic structure and function to specifically transmit light-offset information. Pappaa is a metalloprotease that stimulates local insulin-like growth factor 1 (IGF1) signaling. IGF1 promotes various aspects of synaptic development and function and is broadly expressed, thus requiring local regulators, like Pappaa, to govern its specificity.</description><subject>Animals</subject><subject>Bipolar cells</subject><subject>Cones</subject><subject>Electrophysiological Phenomena - physiology</subject><subject>Female</subject><subject>Growth factors</subject><subject>Insulin</subject><subject>Insulin-like growth factor I</subject><subject>Insulin-Like Growth Factor I - genetics</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>Light</subject><subject>Metalloendopeptidases - genetics</subject><subject>Metalloendopeptidases - physiology</subject><subject>Metalloproteinase</subject><subject>Mutants</subject><subject>Photic Stimulation</subject><subject>Photoreception</subject><subject>Photoreceptor Cells, Vertebrate - physiology</subject><subject>Photoreceptors</subject><subject>Pregnancy</subject><subject>Proteins</subject><subject>Psychomotor Performance - physiology</subject><subject>Retina</subject><subject>Retinal Bipolar Cells - physiology</subject><subject>Retinal cells</subject><subject>Retinal Cone Photoreceptor Cells - physiology</subject><subject>Retinal Photoreceptor Cell Inner Segment - metabolism</subject><subject>Retinal Photoreceptor Cell Inner Segment - physiology</subject><subject>Sensory systems</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Structure-function relationships</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><subject>Synaptogenesis</subject><subject>Zebrafish</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><subject>Zebrafish Proteins - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v0zAYxi0EYmXwFSZLXLik2I5jxxekUcY2NFi1Ma6W67xpPTlxZidF_fZztVEBp_fw_NHz6ofQCSVzWrHy47cfZ3c317eLyzkhgha0njNC6xdollVVME7oSzQjTJJCcMmP0JuU7gkhklD5Gh0xJUtVSzJDv5cR1r3p7a44TSlYZ0Zo8NKb1Bm8jGEE1xfG4BtYTz5rCS83YQwRLAz54Ntdb4bRWfwFtuDD0EE_4jHg79Dsq_Avlybj_Q6fT67JzZ9hY7YuxLfoVWt8gnfP9xjdfT37ubgorq7PLxenV4Xlqhrz-JbXjFeCgoTSNmJV2ppZZhg1tCKyoaYVVLWEi8aaRrV8ZRsCSgkphK3b8hh9euodplUHjc3zovF6iK4zcaeDcfpfpXcbvQ5bXSkpeUVywYfnghgeJkij7lyy4L3pIUxJM1IKWauS0mx9_5_1Pkyxz-9ll-K8lopU2SWeXDaGlCK0hzGU6D1bfWCr92w1rfWebQ6e_P3KIfYHZvkIMVyjwA</recordid><startdate>20180530</startdate><enddate>20180530</enddate><creator>Miller, Andrew H</creator><creator>Howe, Hollis B</creator><creator>Krause, Bryan M</creator><creator>Friedle, Scott A</creator><creator>Banks, Matthew I</creator><creator>Perkins, Brian D</creator><creator>Wolman, Marc A</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8929-779X</orcidid><orcidid>https://orcid.org/0000-0002-9348-6542</orcidid><orcidid>https://orcid.org/0000-0001-5203-0381</orcidid><orcidid>https://orcid.org/0000-0002-1936-7529</orcidid></search><sort><creationdate>20180530</creationdate><title>Pregnancy-Associated Plasma Protein-aa Regulates Photoreceptor Synaptic Development to Mediate Visually Guided Behavior</title><author>Miller, Andrew H ; Howe, Hollis B ; Krause, Bryan M ; Friedle, Scott A ; Banks, Matthew I ; Perkins, Brian D ; Wolman, Marc A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-64f4824561e7e3cd6b3c82c2a21a1507d1af619f046dcad9f4bcd0e996766c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Bipolar cells</topic><topic>Cones</topic><topic>Electrophysiological Phenomena - physiology</topic><topic>Female</topic><topic>Growth factors</topic><topic>Insulin</topic><topic>Insulin-like growth factor I</topic><topic>Insulin-Like Growth Factor I - genetics</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>Light</topic><topic>Metalloendopeptidases - genetics</topic><topic>Metalloendopeptidases - physiology</topic><topic>Metalloproteinase</topic><topic>Mutants</topic><topic>Photic Stimulation</topic><topic>Photoreception</topic><topic>Photoreceptor Cells, Vertebrate - physiology</topic><topic>Photoreceptors</topic><topic>Pregnancy</topic><topic>Proteins</topic><topic>Psychomotor Performance - physiology</topic><topic>Retina</topic><topic>Retinal Bipolar Cells - physiology</topic><topic>Retinal cells</topic><topic>Retinal Cone Photoreceptor Cells - physiology</topic><topic>Retinal Photoreceptor Cell Inner Segment - metabolism</topic><topic>Retinal Photoreceptor Cell Inner Segment - physiology</topic><topic>Sensory systems</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Structure-function relationships</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><topic>Synaptogenesis</topic><topic>Zebrafish</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><topic>Zebrafish Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Andrew H</creatorcontrib><creatorcontrib>Howe, Hollis B</creatorcontrib><creatorcontrib>Krause, Bryan M</creatorcontrib><creatorcontrib>Friedle, Scott A</creatorcontrib><creatorcontrib>Banks, Matthew I</creatorcontrib><creatorcontrib>Perkins, Brian D</creatorcontrib><creatorcontrib>Wolman, Marc A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Andrew H</au><au>Howe, Hollis B</au><au>Krause, Bryan M</au><au>Friedle, Scott A</au><au>Banks, Matthew I</au><au>Perkins, Brian D</au><au>Wolman, Marc A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pregnancy-Associated Plasma Protein-aa Regulates Photoreceptor Synaptic Development to Mediate Visually Guided Behavior</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2018-05-30</date><risdate>2018</risdate><volume>38</volume><issue>22</issue><spage>5220</spage><epage>5236</epage><pages>5220-5236</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>To guide behavior, sensory systems detect the onset and offset of stimuli and process these distinct inputs via parallel pathways. In the retina, this strategy is implemented by splitting neural signals for light onset and offset via synapses connecting photoreceptors to ON and OFF bipolar cells, respectively. It remains poorly understood which molecular cues establish the architecture of this synaptic configuration to split light-onset and light-offset signals. A mutant with reduced synapses between photoreceptors and one bipolar cell type, but not the other, could reveal a critical cue. From this approach, we report a novel synaptic role for
(
) in promoting the structure and function of cone synapses that transmit light-offset information. Electrophysiological and behavioral analyses indicated
mutant zebrafish have dysfunctional cone-to-OFF bipolar cell synapses and impaired responses to light offset, but intact cone-to-ON bipolar cell synapses and light-onset responses. Ultrastructural analyses of
mutant cones showed a lack of presynaptic domains at synapses with OFF bipolar cells.
is expressed postsynaptically to the cones during retinal synaptogenesis and encodes a secreted metalloprotease known to stimulate insulin-like growth factor 1 (IGF1) signaling. Induction of dominant-negative IGF1 receptor expression during synaptogenesis reduced light-offset responses. Conversely, stimulating IGF1 signaling at this time improved
mutants' light-offset responses and cone presynaptic structures. Together, our results indicate Pappaa-regulated IGF1 signaling as a novel pathway that establishes how cone synapses convey light-offset signals to guide behavior.
Distinct sensory inputs, like stimulus onset and offset, are often split at distinct synapses into parallel circuits for processing. In the retina, photoreceptors and ON and OFF bipolar cells form discrete synapses to split neural signals coding light onset and offset, respectively. The molecular cues that establish this synaptic configuration to specifically convey light onset or offset remain unclear. Our work reveals a novel cue:
(
), which regulates photoreceptor synaptic structure and function to specifically transmit light-offset information. Pappaa is a metalloprotease that stimulates local insulin-like growth factor 1 (IGF1) signaling. IGF1 promotes various aspects of synaptic development and function and is broadly expressed, thus requiring local regulators, like Pappaa, to govern its specificity.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>29739870</pmid><doi>10.1523/JNEUROSCI.0061-18.2018</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8929-779X</orcidid><orcidid>https://orcid.org/0000-0002-9348-6542</orcidid><orcidid>https://orcid.org/0000-0001-5203-0381</orcidid><orcidid>https://orcid.org/0000-0002-1936-7529</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2018-05, Vol.38 (22), p.5220-5236 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5977450 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Bipolar cells Cones Electrophysiological Phenomena - physiology Female Growth factors Insulin Insulin-like growth factor I Insulin-Like Growth Factor I - genetics Insulin-Like Growth Factor I - metabolism Light Metalloendopeptidases - genetics Metalloendopeptidases - physiology Metalloproteinase Mutants Photic Stimulation Photoreception Photoreceptor Cells, Vertebrate - physiology Photoreceptors Pregnancy Proteins Psychomotor Performance - physiology Retina Retinal Bipolar Cells - physiology Retinal cells Retinal Cone Photoreceptor Cells - physiology Retinal Photoreceptor Cell Inner Segment - metabolism Retinal Photoreceptor Cell Inner Segment - physiology Sensory systems Signal transduction Signaling Structure-function relationships Synapses Synapses - physiology Synaptogenesis Zebrafish Zebrafish Proteins - genetics Zebrafish Proteins - metabolism Zebrafish Proteins - physiology |
title | Pregnancy-Associated Plasma Protein-aa Regulates Photoreceptor Synaptic Development to Mediate Visually Guided Behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pregnancy-Associated%20Plasma%20Protein-aa%20Regulates%20Photoreceptor%20Synaptic%20Development%20to%20Mediate%20Visually%20Guided%20Behavior&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Miller,%20Andrew%20H&rft.date=2018-05-30&rft.volume=38&rft.issue=22&rft.spage=5220&rft.epage=5236&rft.pages=5220-5236&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0061-18.2018&rft_dat=%3Cproquest_pubme%3E2036789311%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094487905&rft_id=info:pmid/29739870&rfr_iscdi=true |