Pregnancy-Associated Plasma Protein-aa Regulates Photoreceptor Synaptic Development to Mediate Visually Guided Behavior

To guide behavior, sensory systems detect the onset and offset of stimuli and process these distinct inputs via parallel pathways. In the retina, this strategy is implemented by splitting neural signals for light onset and offset via synapses connecting photoreceptors to ON and OFF bipolar cells, re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2018-05, Vol.38 (22), p.5220-5236
Hauptverfasser: Miller, Andrew H, Howe, Hollis B, Krause, Bryan M, Friedle, Scott A, Banks, Matthew I, Perkins, Brian D, Wolman, Marc A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To guide behavior, sensory systems detect the onset and offset of stimuli and process these distinct inputs via parallel pathways. In the retina, this strategy is implemented by splitting neural signals for light onset and offset via synapses connecting photoreceptors to ON and OFF bipolar cells, respectively. It remains poorly understood which molecular cues establish the architecture of this synaptic configuration to split light-onset and light-offset signals. A mutant with reduced synapses between photoreceptors and one bipolar cell type, but not the other, could reveal a critical cue. From this approach, we report a novel synaptic role for ( ) in promoting the structure and function of cone synapses that transmit light-offset information. Electrophysiological and behavioral analyses indicated mutant zebrafish have dysfunctional cone-to-OFF bipolar cell synapses and impaired responses to light offset, but intact cone-to-ON bipolar cell synapses and light-onset responses. Ultrastructural analyses of mutant cones showed a lack of presynaptic domains at synapses with OFF bipolar cells. is expressed postsynaptically to the cones during retinal synaptogenesis and encodes a secreted metalloprotease known to stimulate insulin-like growth factor 1 (IGF1) signaling. Induction of dominant-negative IGF1 receptor expression during synaptogenesis reduced light-offset responses. Conversely, stimulating IGF1 signaling at this time improved mutants' light-offset responses and cone presynaptic structures. Together, our results indicate Pappaa-regulated IGF1 signaling as a novel pathway that establishes how cone synapses convey light-offset signals to guide behavior. Distinct sensory inputs, like stimulus onset and offset, are often split at distinct synapses into parallel circuits for processing. In the retina, photoreceptors and ON and OFF bipolar cells form discrete synapses to split neural signals coding light onset and offset, respectively. The molecular cues that establish this synaptic configuration to specifically convey light onset or offset remain unclear. Our work reveals a novel cue: ( ), which regulates photoreceptor synaptic structure and function to specifically transmit light-offset information. Pappaa is a metalloprotease that stimulates local insulin-like growth factor 1 (IGF1) signaling. IGF1 promotes various aspects of synaptic development and function and is broadly expressed, thus requiring local regulators, like Pappaa, to govern its specificity.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.0061-18.2018