Scutellaria baicalensis Attenuates Airway Remodeling via PI3K/Akt/NF-κB Pathway in Cigarette Smoke Mediated-COPD Rats Model

Background. Scutellaria baicalensis (SB) is commonly used in traditional Chinese medicine for chronic inflammatory diseases. This study aims to investigate the effects of the early intervention with SB on airway remodeling in a well-established rat model of COPD induced by cigarette smoking. Methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evidence-based complementary and alternative medicine 2018-01, Vol.2018 (2018), p.1-12
Hauptverfasser: Dong, Jingcheng, Li, Lulu, Li, Qiuping, Kong, Qing, Cui, Wenqiang, Lin, Jinpei, Xu, Fei, Wei, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Scutellaria baicalensis (SB) is commonly used in traditional Chinese medicine for chronic inflammatory diseases. This study aims to investigate the effects of the early intervention with SB on airway remodeling in a well-established rat model of COPD induced by cigarette smoking. Methods. COPD model in Sprague Dawley (SD) rats were established by exposing them to smoke for 6 days/week, for 12 weeks, 24 weeks, or 36 weeks. Meanwhile, rats were randomly divided into normal control group, model group, Budesonide (BUD) group, and the SB (low, middle, and high) dose groups with 8 rats in each group and 3 stages (12 weeks, 24 weeks, and 36 weeks). After treatment, the pulmonary function was evaluated by BUXCO system and the morphology changes of the lungs were observed with HE and Masson staining. The serum IL-6, IL-8, and IL-10 and TNF-α, TGF-beta (TGF-β1), MMP-2, MMP-9, and TIMP-1 levels in BALF were detected by ELISA-kit assay. The protein expression levels of AKT and NF-κB (p65) were determined by western blot (WB). Results. The oral of SB significantly improved pulmonary function (PF) and ameliorated the pathological damage and attenuated inflammatory cytokines infiltration into the lungs. Meanwhile, the levels of TGF-β, MMP-2, MMP-9, and TIMP-1 were partially significantly decreased. The levels of PI3K/AKT/NF-κB pathway were also markedly suppressed by SB. Conclusions. SB could significantly improve the condition of airway remodeling by inhibiting airway inflammation and partially quenching TGF-β and MMPs via PI3K/AKT/NF-κB pathway.
ISSN:1741-427X
1741-4288
DOI:10.1155/2018/1281420