Heat-induced radiolabeling and fluorescence labeling of Feraheme nanoparticles for PET/SPECT imaging and flow cytometry
This protocol describes the heat-induced radiolabeling of Feraheme (FH) nanoparticles for PET/SPECT imaging and labeling of FH nanoparticles with fluorescent Cy5.5 dyes for flow cytometry. Feraheme (FH) nanoparticles (NPs) have been used extensively for treatment of iron anemia (due to their slow re...
Gespeichert in:
Veröffentlicht in: | Nature protocols 2018-02, Vol.13 (2), p.392-412 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This protocol describes the heat-induced radiolabeling of Feraheme (FH) nanoparticles for PET/SPECT imaging and labeling of FH nanoparticles with fluorescent Cy5.5 dyes for flow cytometry.
Feraheme (FH) nanoparticles (NPs) have been used extensively for treatment of iron anemia (due to their slow release of ionic iron in acidic environments). In addition, injected FH NPs are internalized by monocytes and function as MRI biomarkers for the pathological accumulation of monocytes in disease. We have recently expanded these applications by radiolabeling FH NPs for positron emission tomography (PET) or single-photon emission computed tomography (SPECT) imaging using a heat-induced radiolabeling (HIR) strategy. Imaging FH NPs using PET/SPECT has important advantages over MRI due to lower iron doses and improved quantitation of tissue NP concentrations. HIR of FH NPs leaves the physical and biological properties of the NPs unchanged and allows researchers to build on the extensive knowledge obtained about the pharmacokinetic and safety aspects of FH NPs. In this protocol, we present the step-by-step procedures for heat (120 °C)-induced bonding of three widely employed radiocations (
89
Zr
4+
or
64
Cu
2+
for PET, and
111
In
3+
for SPECT) to FH NPs using a chelateless radiocation surface adsorption (RSA) approach. In addition, we describe the conversion of FH carboxyl groups into amines and their reaction with an
N
-hydroxysuccinimide (NHS) of a Cy5.5 fluorophore. This yields Cy5.5-FH, a fluorescent FH that enables the cells internalizing Cy5.5-FH to be examined using flow cytometry. Finally, we describe procedures for
in vivo
and
ex vivo
uptake of Cy5.5-FH by monocytes and for
in vivo
microPET/CT imaging of HIR-FH NPs. Synthesis of HIR-FH requires experience with working with radioactive cations and can be completed within |
---|---|
ISSN: | 1754-2189 1750-2799 |
DOI: | 10.1038/nprot.2017.133 |