Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field

The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2018-05, Vol.4 (5), p.eaao2929-eaao2929
Hauptverfasser: Holtzman, Benjamin K, Paté, Arthur, Paisley, John, Waldhauser, Felix, Repetto, Douglas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eaao2929
container_issue 5
container_start_page eaao2929
container_title Science advances
container_volume 4
creator Holtzman, Benjamin K
Paté, Arthur
Paisley, John
Waldhauser, Felix
Repetto, Douglas
description The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 < < 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity.
doi_str_mv 10.1126/sciadv.aao2929
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5966224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2046020230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-f488c2a892a8cba6af8c7c17b3b6411ed7283a81c350bcc1e7b984f24ad5810e3</originalsourceid><addsrcrecordid>eNpVUU1r3DAQFaWlCWmuPRbRUy-7lWRZli-FEtq0kJBLcixiPB6vVWxpK3kX9t9Xy25DehhmmHnz5uMx9l6KtZTKfM7ood-vAaJqVfuKXaqqqVeq1vb1i_iCXef8WwghtTG1bN-yC9VaYYSsL9mve8DRB-ITQQo-bHiiPcGUOR5w8shxhLChzH3gmXyeSyrHXULieUu4JDhWbumQKWW-obiMlGaY-OBp6t-xN0Phouuzv2JP37893vxY3T3c_rz5erdCbatlNWhrUYFti2EHBgaLDcqmqzqjpaS-UbYCK7GqRYcoqelaqweloa-tFFRdsS8n3u2um6lHCmWxyW2TnyEdXATv_q8EP7pN3Lu6NUYpXQg-nghiXrwrf10IR4whlBOdNKouDyugT-cpKf7ZUV7c7DPSNEGguMtOCW2EEqo6QtcnKKaYc6LheRcp3FE7d9LOnbUrDR9eXvAM_6dU9Rd695jx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046020230</pqid></control><display><type>article</type><title>Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Holtzman, Benjamin K ; Paté, Arthur ; Paisley, John ; Waldhauser, Felix ; Repetto, Douglas</creator><creatorcontrib>Holtzman, Benjamin K ; Paté, Arthur ; Paisley, John ; Waldhauser, Felix ; Repetto, Douglas ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 &lt; &lt; 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aao2929</identifier><identifier>PMID: 29806015</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>Geology ; GEOTHERMAL ENERGY ; SciAdv r-articles ; Science &amp; Technology - Other Topics</subject><ispartof>Science advances, 2018-05, Vol.4 (5), p.eaao2929-eaao2929</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2018 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-f488c2a892a8cba6af8c7c17b3b6411ed7283a81c350bcc1e7b984f24ad5810e3</citedby><cites>FETCH-LOGICAL-c483t-f488c2a892a8cba6af8c7c17b3b6411ed7283a81c350bcc1e7b984f24ad5810e3</cites><orcidid>0000-0002-2214-5978 ; 0000-0002-6395-0367 ; 0000-0002-6226-7689 ; 0000-0002-1286-9737 ; 0000000262267689 ; 0000000263950367 ; 0000000212869737 ; 0000000222145978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966224/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966224/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29806015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1625980$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Holtzman, Benjamin K</creatorcontrib><creatorcontrib>Paté, Arthur</creatorcontrib><creatorcontrib>Paisley, John</creatorcontrib><creatorcontrib>Waldhauser, Felix</creatorcontrib><creatorcontrib>Repetto, Douglas</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 &lt; &lt; 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity.</description><subject>Geology</subject><subject>GEOTHERMAL ENERGY</subject><subject>SciAdv r-articles</subject><subject>Science &amp; Technology - Other Topics</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVUU1r3DAQFaWlCWmuPRbRUy-7lWRZli-FEtq0kJBLcixiPB6vVWxpK3kX9t9Xy25DehhmmHnz5uMx9l6KtZTKfM7ood-vAaJqVfuKXaqqqVeq1vb1i_iCXef8WwghtTG1bN-yC9VaYYSsL9mve8DRB-ITQQo-bHiiPcGUOR5w8shxhLChzH3gmXyeSyrHXULieUu4JDhWbumQKWW-obiMlGaY-OBp6t-xN0Phouuzv2JP37893vxY3T3c_rz5erdCbatlNWhrUYFti2EHBgaLDcqmqzqjpaS-UbYCK7GqRYcoqelaqweloa-tFFRdsS8n3u2um6lHCmWxyW2TnyEdXATv_q8EP7pN3Lu6NUYpXQg-nghiXrwrf10IR4whlBOdNKouDyugT-cpKf7ZUV7c7DPSNEGguMtOCW2EEqo6QtcnKKaYc6LheRcp3FE7d9LOnbUrDR9eXvAM_6dU9Rd695jx</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Holtzman, Benjamin K</creator><creator>Paté, Arthur</creator><creator>Paisley, John</creator><creator>Waldhauser, Felix</creator><creator>Repetto, Douglas</creator><general>AAAS</general><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2214-5978</orcidid><orcidid>https://orcid.org/0000-0002-6395-0367</orcidid><orcidid>https://orcid.org/0000-0002-6226-7689</orcidid><orcidid>https://orcid.org/0000-0002-1286-9737</orcidid><orcidid>https://orcid.org/0000000262267689</orcidid><orcidid>https://orcid.org/0000000263950367</orcidid><orcidid>https://orcid.org/0000000212869737</orcidid><orcidid>https://orcid.org/0000000222145978</orcidid></search><sort><creationdate>20180501</creationdate><title>Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field</title><author>Holtzman, Benjamin K ; Paté, Arthur ; Paisley, John ; Waldhauser, Felix ; Repetto, Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-f488c2a892a8cba6af8c7c17b3b6411ed7283a81c350bcc1e7b984f24ad5810e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Geology</topic><topic>GEOTHERMAL ENERGY</topic><topic>SciAdv r-articles</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holtzman, Benjamin K</creatorcontrib><creatorcontrib>Paté, Arthur</creatorcontrib><creatorcontrib>Paisley, John</creatorcontrib><creatorcontrib>Waldhauser, Felix</creatorcontrib><creatorcontrib>Repetto, Douglas</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holtzman, Benjamin K</au><au>Paté, Arthur</au><au>Paisley, John</au><au>Waldhauser, Felix</au><au>Repetto, Douglas</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>4</volume><issue>5</issue><spage>eaao2929</spage><epage>eaao2929</epage><pages>eaao2929-eaao2929</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 &lt; &lt; 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>29806015</pmid><doi>10.1126/sciadv.aao2929</doi><orcidid>https://orcid.org/0000-0002-2214-5978</orcidid><orcidid>https://orcid.org/0000-0002-6395-0367</orcidid><orcidid>https://orcid.org/0000-0002-6226-7689</orcidid><orcidid>https://orcid.org/0000-0002-1286-9737</orcidid><orcidid>https://orcid.org/0000000262267689</orcidid><orcidid>https://orcid.org/0000000263950367</orcidid><orcidid>https://orcid.org/0000000212869737</orcidid><orcidid>https://orcid.org/0000000222145978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2018-05, Vol.4 (5), p.eaao2929-eaao2929
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5966224
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Geology
GEOTHERMAL ENERGY
SciAdv r-articles
Science & Technology - Other Topics
title Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20reveals%20cyclic%20changes%20in%20seismic%20source%20spectra%20in%20Geysers%20geothermal%20field&rft.jtitle=Science%20advances&rft.au=Holtzman,%20Benjamin%20K&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2018-05-01&rft.volume=4&rft.issue=5&rft.spage=eaao2929&rft.epage=eaao2929&rft.pages=eaao2929-eaao2929&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aao2929&rft_dat=%3Cproquest_pubme%3E2046020230%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2046020230&rft_id=info:pmid/29806015&rfr_iscdi=true