Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field
The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processe...
Gespeichert in:
Veröffentlicht in: | Science advances 2018-05, Vol.4 (5), p.eaao2929-eaao2929 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eaao2929 |
---|---|
container_issue | 5 |
container_start_page | eaao2929 |
container_title | Science advances |
container_volume | 4 |
creator | Holtzman, Benjamin K Paté, Arthur Paisley, John Waldhauser, Felix Repetto, Douglas |
description | The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 <
< 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity. |
doi_str_mv | 10.1126/sciadv.aao2929 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5966224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2046020230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-f488c2a892a8cba6af8c7c17b3b6411ed7283a81c350bcc1e7b984f24ad5810e3</originalsourceid><addsrcrecordid>eNpVUU1r3DAQFaWlCWmuPRbRUy-7lWRZli-FEtq0kJBLcixiPB6vVWxpK3kX9t9Xy25DehhmmHnz5uMx9l6KtZTKfM7ood-vAaJqVfuKXaqqqVeq1vb1i_iCXef8WwghtTG1bN-yC9VaYYSsL9mve8DRB-ITQQo-bHiiPcGUOR5w8shxhLChzH3gmXyeSyrHXULieUu4JDhWbumQKWW-obiMlGaY-OBp6t-xN0Phouuzv2JP37893vxY3T3c_rz5erdCbatlNWhrUYFti2EHBgaLDcqmqzqjpaS-UbYCK7GqRYcoqelaqweloa-tFFRdsS8n3u2um6lHCmWxyW2TnyEdXATv_q8EP7pN3Lu6NUYpXQg-nghiXrwrf10IR4whlBOdNKouDyugT-cpKf7ZUV7c7DPSNEGguMtOCW2EEqo6QtcnKKaYc6LheRcp3FE7d9LOnbUrDR9eXvAM_6dU9Rd695jx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046020230</pqid></control><display><type>article</type><title>Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Holtzman, Benjamin K ; Paté, Arthur ; Paisley, John ; Waldhauser, Felix ; Repetto, Douglas</creator><creatorcontrib>Holtzman, Benjamin K ; Paté, Arthur ; Paisley, John ; Waldhauser, Felix ; Repetto, Douglas ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 <
< 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aao2929</identifier><identifier>PMID: 29806015</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>Geology ; GEOTHERMAL ENERGY ; SciAdv r-articles ; Science & Technology - Other Topics</subject><ispartof>Science advances, 2018-05, Vol.4 (5), p.eaao2929-eaao2929</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2018 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-f488c2a892a8cba6af8c7c17b3b6411ed7283a81c350bcc1e7b984f24ad5810e3</citedby><cites>FETCH-LOGICAL-c483t-f488c2a892a8cba6af8c7c17b3b6411ed7283a81c350bcc1e7b984f24ad5810e3</cites><orcidid>0000-0002-2214-5978 ; 0000-0002-6395-0367 ; 0000-0002-6226-7689 ; 0000-0002-1286-9737 ; 0000000262267689 ; 0000000263950367 ; 0000000212869737 ; 0000000222145978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966224/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966224/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29806015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1625980$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Holtzman, Benjamin K</creatorcontrib><creatorcontrib>Paté, Arthur</creatorcontrib><creatorcontrib>Paisley, John</creatorcontrib><creatorcontrib>Waldhauser, Felix</creatorcontrib><creatorcontrib>Repetto, Douglas</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 <
< 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity.</description><subject>Geology</subject><subject>GEOTHERMAL ENERGY</subject><subject>SciAdv r-articles</subject><subject>Science & Technology - Other Topics</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVUU1r3DAQFaWlCWmuPRbRUy-7lWRZli-FEtq0kJBLcixiPB6vVWxpK3kX9t9Xy25DehhmmHnz5uMx9l6KtZTKfM7ood-vAaJqVfuKXaqqqVeq1vb1i_iCXef8WwghtTG1bN-yC9VaYYSsL9mve8DRB-ITQQo-bHiiPcGUOR5w8shxhLChzH3gmXyeSyrHXULieUu4JDhWbumQKWW-obiMlGaY-OBp6t-xN0Phouuzv2JP37893vxY3T3c_rz5erdCbatlNWhrUYFti2EHBgaLDcqmqzqjpaS-UbYCK7GqRYcoqelaqweloa-tFFRdsS8n3u2um6lHCmWxyW2TnyEdXATv_q8EP7pN3Lu6NUYpXQg-nghiXrwrf10IR4whlBOdNKouDyugT-cpKf7ZUV7c7DPSNEGguMtOCW2EEqo6QtcnKKaYc6LheRcp3FE7d9LOnbUrDR9eXvAM_6dU9Rd695jx</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Holtzman, Benjamin K</creator><creator>Paté, Arthur</creator><creator>Paisley, John</creator><creator>Waldhauser, Felix</creator><creator>Repetto, Douglas</creator><general>AAAS</general><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2214-5978</orcidid><orcidid>https://orcid.org/0000-0002-6395-0367</orcidid><orcidid>https://orcid.org/0000-0002-6226-7689</orcidid><orcidid>https://orcid.org/0000-0002-1286-9737</orcidid><orcidid>https://orcid.org/0000000262267689</orcidid><orcidid>https://orcid.org/0000000263950367</orcidid><orcidid>https://orcid.org/0000000212869737</orcidid><orcidid>https://orcid.org/0000000222145978</orcidid></search><sort><creationdate>20180501</creationdate><title>Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field</title><author>Holtzman, Benjamin K ; Paté, Arthur ; Paisley, John ; Waldhauser, Felix ; Repetto, Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-f488c2a892a8cba6af8c7c17b3b6411ed7283a81c350bcc1e7b984f24ad5810e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Geology</topic><topic>GEOTHERMAL ENERGY</topic><topic>SciAdv r-articles</topic><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holtzman, Benjamin K</creatorcontrib><creatorcontrib>Paté, Arthur</creatorcontrib><creatorcontrib>Paisley, John</creatorcontrib><creatorcontrib>Waldhauser, Felix</creatorcontrib><creatorcontrib>Repetto, Douglas</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holtzman, Benjamin K</au><au>Paté, Arthur</au><au>Paisley, John</au><au>Waldhauser, Felix</au><au>Repetto, Douglas</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>4</volume><issue>5</issue><spage>eaao2929</spage><epage>eaao2929</epage><pages>eaao2929-eaao2929</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 <
< 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>29806015</pmid><doi>10.1126/sciadv.aao2929</doi><orcidid>https://orcid.org/0000-0002-2214-5978</orcidid><orcidid>https://orcid.org/0000-0002-6395-0367</orcidid><orcidid>https://orcid.org/0000-0002-6226-7689</orcidid><orcidid>https://orcid.org/0000-0002-1286-9737</orcidid><orcidid>https://orcid.org/0000000262267689</orcidid><orcidid>https://orcid.org/0000000263950367</orcidid><orcidid>https://orcid.org/0000000212869737</orcidid><orcidid>https://orcid.org/0000000222145978</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2018-05, Vol.4 (5), p.eaao2929-eaao2929 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5966224 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Geology GEOTHERMAL ENERGY SciAdv r-articles Science & Technology - Other Topics |
title | Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20reveals%20cyclic%20changes%20in%20seismic%20source%20spectra%20in%20Geysers%20geothermal%20field&rft.jtitle=Science%20advances&rft.au=Holtzman,%20Benjamin%20K&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2018-05-01&rft.volume=4&rft.issue=5&rft.spage=eaao2929&rft.epage=eaao2929&rft.pages=eaao2929-eaao2929&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aao2929&rft_dat=%3Cproquest_pubme%3E2046020230%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2046020230&rft_id=info:pmid/29806015&rfr_iscdi=true |