Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field

The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2018-05, Vol.4 (5), p.eaao2929-eaao2929
Hauptverfasser: Holtzman, Benjamin K, Paté, Arthur, Paisley, John, Waldhauser, Felix, Repetto, Douglas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 < < 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aao2929