Flipping the Switch “On” for Aminoglycoside-Resistance Enzymes: The Mechanism Is Finally Revealed
In a recent issue of Structure, Caldwell et al. (2016) determined crystal structures of APH(2″)-Ia in complex with various combinations of aminoglycosides and nucleosides, which compellingly revealed that the catalytic activity of this resistance enzyme is regulated by a conformational change of the...
Gespeichert in:
Veröffentlicht in: | Structure (London) 2016-07, Vol.24 (7), p.1011-1013 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a recent issue of Structure, Caldwell et al. (2016) determined crystal structures of APH(2″)-Ia in complex with various combinations of aminoglycosides and nucleosides, which compellingly revealed that the catalytic activity of this resistance enzyme is regulated by a conformational change of the triphosphate of GTP, a mechanism previously unknown for antibiotic kinases.
In a recent issue of Structure, Caldwell et al. (2016) determined crystal structures of APH(2″)-Ia in complex with various combinations of aminoglycosides and nucleosides, which compellingly revealed that the catalytic activity of this resistance enzyme is regulated by a conformational change of the triphosphate of GTP, a mechanism previously unknown for antibiotic kinases. |
---|---|
ISSN: | 0969-2126 1878-4186 |
DOI: | 10.1016/j.str.2016.06.006 |