Tertiary structure of apolipoprotein A-I in nascent high-density lipoproteins
Understanding the function of high-density lipoprotein (HDL) requires detailed knowledge of the structure of its primary protein, apolipoprotein A-I (APOA1). However, APOA1 flexibility and HDL heterogeneity have confounded decades of efforts to determine high-resolution structures and consistent mod...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-05, Vol.115 (20), p.5163-5168 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding the function of high-density lipoprotein (HDL) requires detailed knowledge of the structure of its primary protein, apolipoprotein A-I (APOA1). However, APOA1 flexibility and HDL heterogeneity have confounded decades of efforts to determine high-resolution structures and consistent models. Here, molecular dynamics simulations totaling 30 μs on two nascent HDLs, each with 2 APOA1 and either 160 phospholipids and 24 cholesterols or 200 phospholipids and 20 cholesterols, show that residues 1–21 of the N-terminal domains of APOA1 interact via strong salt bridges. Residues 26–43 of one APOA1 in the smaller particle form a hinge on the disc edge, which displaces the C-terminal domain of the other APOA1 to the phospholipid surface. The proposed structures are supported by chemical cross-linking, Rosetta modeling of the N-terminal domain, and analysis of the lipid-free Δ185APOA1 crystal structure. These structures provide a framework for understanding HDL maturation and revise all previous models of nascent HDL. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1721181115 |