Softness Induced Enhancement in Net Throughput of Non-Linear Bio-Fluids in Nanofluidic Channel under EDL Phenomenon
In this article, we describe the electro-hydrodynamics of non-Newtonian fluid in narrow fluidic channel with solvent permeable and ion-penetrable polyelectrolyte layer (PEL) grafted on channel surface with an interaction of non-overlapping electric double layer (EDL) phenomenon. In this analysis, we...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-05, Vol.8 (1), p.7893-16, Article 7893 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we describe the electro-hydrodynamics of non-Newtonian fluid in narrow fluidic channel with solvent permeable and ion-penetrable polyelectrolyte layer (PEL) grafted on channel surface with an interaction of non-overlapping electric double layer (EDL) phenomenon. In this analysis, we integrate power-law model in the momentum equation for describing the non-Newtonian rheology. The complex interplay between the non-Newtonian rheology and interfacial electrochemistry in presence of PEL on the walls leads to non-intuitive variations in the underlying flow dynamics in the channels. As such, we bring out the variations in flow dynamics and their implications on the net throughput in the channel in terms of different parameters like power-law index (
n
), drag parameter (
α
), PEL thickness (
d
) and Debye length ratio (
κ
/
κ
PEL
) are discussed. We show, in this analysis, a relative enhancement in the net throughput through a soft nanofluidic channel for both the shear-thinning and shear-thickening fluids, attributed to the stronger electrical body forces stemming from ionic interactions between polyelectrolyte layer and electrolyte layer. Also, we illustrate that higher apparent viscosity inherent with the class of shear-thickening fluid weakens the softness induced enhancement in the volumetric flow rate for the shear-thickening fluids, since the viscous drag offered to the f low f ield becomes higher for the transport of shear-thickening fluid. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-26056-6 |