Synergistic Effect of Nitrogen Doping and MWCNT Intercalation for the Graphene Hybrid Support for Pt Nanoparticles with Exemplary Oxygen Reduction Reaction Performance
The potential of graphene⁻multi-walled-carbon nanotube (G-M) hybrids prepared by the one-pot modified Hummers method followed by thermal annealing has been demonstrated by employing one as an electrocatalyst support for oxygen reduction reaction (ORR). N doping effectively modified the electronic st...
Gespeichert in:
Veröffentlicht in: | Materials 2018-04, Vol.11 (4), p.642 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The potential of graphene⁻multi-walled-carbon nanotube (G-M) hybrids prepared by the one-pot modified Hummers method followed by thermal annealing has been demonstrated by employing one as an electrocatalyst support for oxygen reduction reaction (ORR). N doping effectively modified the electronic structure of the G-M hybrid support, which was beneficial for the uniform distribution of Pt nanoparticles, and ORR activities were further improved. The newly prepared Pt/N-G-M catalyst demonstrated higher electrochemical activity than Pt/G-M and Pt/G catalysts. Even compared with commercial 20 wt % Pt/C (JM20), Pt/N-G-M delivered a better half-wave potential and mass activity. In terms of the durability test, Pt/N-G-M maintained 72.7% of its initial electrochemical active surface area (ECSA) after 2000 repeated potential cycles between 0 and 1.2 V in acidic media in relation to the 44.4% retention for JM20. Moreover, the half-wave potential for Pt/N-G-M showed only a minimal change, significantly superior to the 139 mV of loss for JM20. It is expected that Pt/N-G-M can be the potential candidate as a highly efficient and durable catalyst if utilized in proton exchange membrane fuel cells (PEMFCs). |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma11040642 |