Highly Efficient Low-Temperature N-Doped TiO₂ Catalysts for Visible Light Photocatalytic Applications

In this paper, TiO₂ prepared with an aqueous sol-gel synthesis by peptization process is doped with nitrogen precursor to extend its activity towards the visible region. Three N-precursors are used: urea, ethylenediamine and triethylamine. Different molar N/Ti ratios are tested and the synthesis is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2018-04, Vol.11 (4), p.584
Hauptverfasser: Mahy, Julien G, Cerfontaine, Vincent, Poelman, Dirk, Devred, François, Gaigneaux, Eric M, Heinrichs, Benoît, Lambert, Stéphanie D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, TiO₂ prepared with an aqueous sol-gel synthesis by peptization process is doped with nitrogen precursor to extend its activity towards the visible region. Three N-precursors are used: urea, ethylenediamine and triethylamine. Different molar N/Ti ratios are tested and the synthesis is adapted for each dopant. For urea- and trimethylamine-doped samples, anatase-brookite TiO₂ nanoparticles of 6-8 nm are formed, with a specific surface area between 200 and 275 m²·g . In ethylenediamine-doped samples, the formation of rutile phase is observed, and TiO₂ nanoparticles of 6-8 nm with a specific surface area between 185 and 240 m²·g are obtained. X-ray photoelectron spectroscopy (XPS) and diffuse reflectance measurements show the incorporation of nitrogen in TiO₂ materials through Ti-O-N bonds allowing light absorption in the visible region. Photocatalytic tests on the remediation of water polluted with -nitrophenol show a marked improvement for all doped catalysts under visible light. The optimum doping, taking into account cost, activity and ease of synthesis, is up-scaled to a volume of 5 L and compared to commercial Degussa P25 material. This up-scaled sample shows similar properties compared to the lab-scale sample, i.e., a photoactivity 4 times higher than commercial P25.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma11040584